Skip to main content

Advertisement

Log in

DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastasis is a leading cause of mortality and morbidity in cancer. This process needs angiogenesis. The biology underlying cancer, metastasis, and angiogenesis has been investigated so as to determine the therapeutic targets. Invasive and metastatic cancer cells have undergone numerous genetic and epigenetic changes, manifested by cytoskeletal changes, loss of adhesion, and expression of proteolytic enzymes that degrade the basement membrane. Additionally, in endothelial cells, some epigenetic modifications occur during the formation of angiogenesis. Researchers have used some methylation inhibitors, histone deacetylase inhibitors, or methylating agents (such as S-adenosylmethionine, SAM) against cancer and angiogenesis. Although they are effective to beat these diseases, each one results in differentiation or changes in genome structure. We review epigenetically modified genes related with angiogenesis and metastasis in cancer and endothelial cells, and suggest a new proposal. This hypothesis has discussed the importance of the usage of DNA methylation inhibitors together with SAM to prevent tumor progression and genome instability or changes resulting in additional diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mollabashy, A., & Scarborough, M. (2000). The mechanism of metastasis. The Orthopedic Clinics of North America, 31(4), 529–535.

    CAS  PubMed  Google Scholar 

  2. Ehrlich, M. (2002). DNA methylation in cancer: Too much, but also too little. Oncogene, 21(35), 5400–5413.

    CAS  PubMed  Google Scholar 

  3. Wolffe, A. P., & Matzke, M. A. (1999). Epigenetics: Regulation through repression. Science, 286(5439), 481–486.

    CAS  PubMed  Google Scholar 

  4. Panning, B., & Jaenisch, R. (1998). RNA and the epigenetic regulation of X chromosome inactivation. Cell, 93(3), 305–308.

    CAS  PubMed  Google Scholar 

  5. Li, E., Beard, C., & Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature, 366(6453), 362–365.

    CAS  PubMed  Google Scholar 

  6. Richardson, B. (2003). Impact of aging on DNA methylation. Ageing Research Reviews, 2(3), 245–261.

    CAS  PubMed  Google Scholar 

  7. Sigalotti, L., Fratta, E., Coral, S., Cortini, E., Covre, A., Nicolay, H. J., et al. (2007). Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. Journal of Cellular Physiology, 212(2), 330–344.

    CAS  PubMed  Google Scholar 

  8. Hermann, A., Gowher, H., & Jeltsch, A. (2004). Biochemistry and biology of mammalian DNA methyltransferases. Cellular and Molecular Life Sciences, 61(19–20), 2571–2587.

    CAS  PubMed  Google Scholar 

  9. Bussolino, F., Mantovani, A., & Persico, G. (1997). Molecular mechanisms of blood vessel formation. Trends in Biochemical Sciences, 22(7), 251–256.

    CAS  PubMed  Google Scholar 

  10. Esteller, M. (2005). DNA methylation and cancer therapy: New developments and expectations. Current Opinion in Oncology, 17(1), 55–60.

    CAS  PubMed  Google Scholar 

  11. Momparler, R. L., & Bovenzi, V. (2000). DNA methylation and cancer. Journal of Cellular Physiology, 183(2), 145–154.

    CAS  PubMed  Google Scholar 

  12. Razin, A., & Riggs, A. D. (1980). DNA methylation and gene function. Science, 210(4470), 604–610.

    CAS  PubMed  Google Scholar 

  13. Pulukuri, S. M., Estes, N., Patel, J., & Rao, J. S. (2007). Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer. Cancer Research, 67(3), 930–939.

    CAS  PubMed  Google Scholar 

  14. Hellebrekers, D. M., Jair, K. W., Vire, E., Eguchi, S., Hoebers, N. T., Fraga, M. F., et al. (2006). Angiostatic activity of DNA methyltransferase inhibitors. Molecular Cancer Therapeutics, 5(2), 467–475.

    CAS  PubMed  Google Scholar 

  15. Kim, M. S., Kwon, H. J., Lee, Y. M., Baek, J. H., Jang, J. E., Lee, S. W., et al. (2001). Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nature Medicine, 7(4), 437–443.

    PubMed  Google Scholar 

  16. Struhl, K. (1998). Histone acetylation and transcriptional regulatory mechanisms. Genes & Development, 12(5), 599–606.

    CAS  Google Scholar 

  17. Noma, K., Allis, C. D., & Grewal, S. I. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science, 293(5532), 1150–1155.

    CAS  PubMed  Google Scholar 

  18. Nguyen, C. T., Weisenberger, D. J., Velicescu, M., Gonzales, F. A., Lin, J. C., Liang, G., et al. (2002). Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2'-deoxycytidine. Cancer Research, 62(22), 6456–6461.

    CAS  PubMed  Google Scholar 

  19. Fahrner, J. A., Eguchi, S., Herman, J. G., & Baylin, S. B. (2002). Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Research, 62(24), 7213–7218.

    CAS  PubMed  Google Scholar 

  20. Hellebrekers, D. M., Melotte, V., Vire, E., Langenkamp, E., Molema, G., Fuks, F., et al. (2007). Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Research, 67(9), 4138–4148.

    CAS  PubMed  Google Scholar 

  21. Pedrazzani, C., Corso, G., Marrelli, D., & Roviello, F. (2007). E-cadherin and hereditary diffuse gastric cancer. Surgery, 142(5), 645–657.

    PubMed  Google Scholar 

  22. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.

    CAS  PubMed  Google Scholar 

  23. Qian, X., Karpova, T., Sheppard, A. M., McNally, J., & Lowy, D. R. (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. The EMBO Journal, 23(8), 1739–1748.

    CAS  PubMed  Google Scholar 

  24. Stockinger, A., Eger, A., Wolf, J., Beug, H., & Foisner, R. (2001). E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. The Journal of Cell Biology, 154(6), 1185–1196.

    CAS  PubMed  Google Scholar 

  25. Gottardi, C. J., Wong, E., & Gumbiner, B. M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. The Journal of Cell Biology, 153(5), 1049–1060.

    CAS  PubMed  Google Scholar 

  26. Wong, A. S., & Gumbiner, B. M. (2003). Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. The Journal of Cell Biology, 161(6), 1191–1203.

    CAS  PubMed  Google Scholar 

  27. Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., & Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors. Journal of Cell Science, 116(Pt 3), 499–511.

    CAS  PubMed  Google Scholar 

  28. Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7(6), 1267–1278.

    CAS  PubMed  Google Scholar 

  29. De Craene, B., van Roy, F., & Berx, G. (2005). Unraveling signalling cascades for the Snail family of transcription factors. Cellular Signalling, 17(5), 535–547.

    PubMed  Google Scholar 

  30. Di Croce, L., & Pelicci, P. G. (2003). Tumour-associated hypermethylation: Silencing E-cadherin expression enhances invasion and metastasis. European Journal of Cancer, 39(4), 413–414.

    PubMed  Google Scholar 

  31. Wang, H. D., Ren, J., & Zhang, L. (2004). CDH1 germline mutation in hereditary gastric carcinoma. World Journal of Gastroenterology, 10(21), 3088–3093.

    CAS  PubMed  Google Scholar 

  32. Hirohashi, S. (1998). Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. The American Journal of Pathology, 153(2), 333–339.

    CAS  PubMed  Google Scholar 

  33. Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B., & Herman, J. G. (2000). Methylation patterns of the E-cadherin 5' CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. The Journal of Biological Chemistry, 275(4), 2727–2732.

    CAS  PubMed  Google Scholar 

  34. Viswanathan, M., Tsuchida, N., & Shanmugam, G. (2003). Promoter hypermethylation profile of tumor-associated genes p16, p15, hMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. International Journal of Cancer, 105(1), 41–46.

    CAS  Google Scholar 

  35. de Moraes, R. V., Oliveira, D. T., Landman, G., de Carvalho, F., Caballero, O., Nonogaki, S., et al. (2008). E-cadherin abnormalities resulting from CPG methylation promoter in metastatic and nonmetastatic oral cancer. Head & Neck, 30(1), 85–92.

    Google Scholar 

  36. Nass, S. J., Herman, J. G., Gabrielson, E., Iversen, P. W., Parl, F. F., Davidson, N. E., et al. (2000). Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer. Cancer Research, 60(16), 4346–4348.

    CAS  PubMed  Google Scholar 

  37. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu, R., Jarrard, D. F., et al. (1995). E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Research, 55(22), 5195–5199.

    CAS  PubMed  Google Scholar 

  38. Mejlvang, J., Kriajevska, M., Berditchevski, F., Bronstein, I., Lukanidin, E. M., Pringle, J. H., et al. (2007). Characterization of E-cadherin-dependent and -independent events in a new model of c-Fos-mediated epithelial-mesenchymal transition. Experimental Cell Research, 313(2), 380–393.

    CAS  PubMed  Google Scholar 

  39. Kudo, Y., Kitajima, S., Ogawa, I., Hiraoka, M., Sargolzaei, S., Keikhaee, M. R., et al. (2004). Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clinical Cancer Research, 10(16), 5455–5463.

    CAS  PubMed  Google Scholar 

  40. Chang, H. W., Chow, V., Lam, K. Y., Wei, W. I., & Yuen, A. (2002). Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer, 94(2), 386–392.

    CAS  PubMed  Google Scholar 

  41. Nakayama, S., Sasaki, A., Mese, H., Alcalde, R. E., Tsuji, T., & Matsumura, T. (2001). The E-cadherin gene is silenced by CpG methylation in human oral squamous cell carcinomas. International Journal of Cancer, 93(5), 667–673.

    CAS  Google Scholar 

  42. Yeh, K. T., Shih, M. C., Lin, T. H., Chen, J. C., Chang, J. Y., Kao, C. F., et al. (2002). The correlation between CpG methylation on promoter and protein expression of E-cadherin in oral squamous cell carcinoma. Anticancer Research, 22(6C), 3971–3975.

    CAS  PubMed  Google Scholar 

  43. Hasegawa, M., Nelson, H. H., Peters, E., Ringstrom, E., Posner, M., & Kelsey, K. T. (2002). Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene, 21(27), 4231–4236.

    CAS  PubMed  Google Scholar 

  44. Eggert, A., Ikegaki, N., Kwiatkowski, J., Zhao, H., Brodeur, G. M., & Himelstein, B. P. (2000). High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clinical Cancer Research, 6(5), 1900–1908.

    CAS  PubMed  Google Scholar 

  45. Hatzi, E., Murphy, C., Zoephel, A., Rasmussen, H., Morbidelli, L., Ahorn, H., et al. (2002). N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene, 21(22), 3552–3561.

    CAS  PubMed  Google Scholar 

  46. Adams, J. C. (2001). Thrombospondins: Multifunctional regulators of cell interactions. Annual Review of Cell and Developmental Biology, 17, 25–51.

    CAS  PubMed  Google Scholar 

  47. Bornstein, P. (1992). Thrombospondins: Structure and regulation of expression. The FASEB Journal, 6(14), 3290–3299.

    CAS  PubMed  Google Scholar 

  48. Jimenez, B., Volpert, O. V., Crawford, S. E., Febbraio, M., Silverstein, R. L., & Bouck, N. (2000). Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Medicine, 6(1), 41–48.

    CAS  PubMed  Google Scholar 

  49. Tolsma, S. S., Volpert, O. V., Good, D. J., Frazier, W. A., Polverini, P. J., & Bouck, N. (1993). Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. The Journal of Cell Biology, 122(2), 497–511.

    CAS  PubMed  Google Scholar 

  50. Suzuma, K., Takagi, H., Otani, A., Oh, H., & Honda, Y. (1999). Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. The American Journal of Pathology, 154(2), 343–354.

    CAS  PubMed  Google Scholar 

  51. Sheibani, N., & Frazier, W. A. (1995). Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 92(15), 6788–6792.

    CAS  PubMed  Google Scholar 

  52. Weinstat-Saslow, D. L., Zabrenetzky, V. S., VanHoutte, K., Frazier, W. A., Roberts, D. D., & Steeg, P. S. (1994). Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Research, 54(24), 6504–6511.

    CAS  PubMed  Google Scholar 

  53. Zabrenetzky, V., Harris, C. C., Steeg, P. S., & Roberts, D. D. (1994). Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. International Journal of Cancer, 59(2), 191–195.

    CAS  Google Scholar 

  54. Lawler, J. (2002). Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. Journal of Cellular and Molecular Medicine, 6(1), 1–12.

    CAS  PubMed  Google Scholar 

  55. Gilmore, A. P., & Romer, L. H. (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Molecular Biology of the Cell, 7(8), 1209–1224.

    CAS  PubMed  Google Scholar 

  56. Dameron, K. M., Volpert, O. V., Tainsky, M. A., & Bouck, N. (1994). Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science, 265(5178), 1582–1584.

    CAS  PubMed  Google Scholar 

  57. Yang, Q. W., Liu, S., Tian, Y., Salwen, H. R., Chlenski, A., Weinstein, J., et al. (2003). Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Research, 63(19), 6299–6310.

    CAS  PubMed  Google Scholar 

  58. Miyamoto, N., Yamamoto, H., Taniguchi, H., Miyamoto, C., Oki, M., Adachi, Y., et al. (2007). Differential expression of angiogenesis-related genes in human gastric cancers with and those without high-frequency microsatellite instability. Cancer Letters, 254(1), 42–53.

    CAS  PubMed  Google Scholar 

  59. Kanai, Y., Ushijima, S., Kondo, Y., Nakanishi, Y., & Hirohashi, S. (2001). DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. International Journal of Cancer, 91(2), 205–212.

    CAS  Google Scholar 

  60. Ueki, T., Toyota, M., Sohn, T., Yeo, C. J., Issa, J. P., Hruban, R. H., et al. (2000). Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research, 60(7), 1835–1839.

    CAS  PubMed  Google Scholar 

  61. Hu, C. J., Chen, S. D., Yang, D. I., Lin, T. N., Chen, C. M., Huang, T. H., et al. (2006). Promoter region methylation and reduced expression of thrombospondin-1 after oxygen-glucose deprivation in murine cerebral endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 26(12), 1519–1526.

    CAS  PubMed  Google Scholar 

  62. Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., & Baylin, S. B. (1999). Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genetics, 21(1), 103–107.

    CAS  PubMed  Google Scholar 

  63. Anand-Apte, B., Bao, L., Smith, R., Iwata, K., Olsen, B. R., Zetter, B., et al. (1996). A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochemistry and Cell Biology, 74(6), 853–862.

    CAS  PubMed  Google Scholar 

  64. Ahonen, M., Baker, A. H., & Kahari, V. M. (1998). Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Research, 58(11), 2310–2315.

    CAS  PubMed  Google Scholar 

  65. Qi, J. H., Ebrahem, Q., Moore, N., Murphy, G., Claesson-Welsh, L., Bond, M., et al. (2003). A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): İnhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nature Medicine, 9(4), 407–415.

    CAS  PubMed  Google Scholar 

  66. Fendrich, V., Slater, E. P., Heinmoller, E., Ramaswamy, A., Celik, I., Nowak, O., et al. (2005). Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancreatic adenocarcinomas. Pancreas, 30(2), e40–e45.

    PubMed  Google Scholar 

  67. Bachman, K. E., Herman, J. G., Corn, P. G., Merlo, A., Costello, J. F., Cavenee, W. K., et al. (1999). Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Research, 59(4), 798–802.

    CAS  PubMed  Google Scholar 

  68. Wild, A., Ramaswamy, A., Langer, P., Celik, I., Fendrich, V., Chaloupka, B., et al. (2003). Frequent methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene in pancreatic endocrine tumors. The Journal of Clinical Endocrinology and Metabolism, 88(3), 1367–1373.

    CAS  PubMed  Google Scholar 

  69. Lee, S., Kim, W. H., Jung, H. Y., Yang, M. H., & Kang, G. H. (2002). Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. The American Journal of Pathology, 161(3), 1015–1022.

    CAS  PubMed  Google Scholar 

  70. Lui, E. L., Loo, W. T., Zhu, L., Cheung, M. N., & Chow, L. W. (2005). DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomedicine & Pharmacotherapy, 59(Suppl 2), S363–S365.

    CAS  Google Scholar 

  71. van der Velden, P. A., Zuidervaart, W., Hurks, M. H., Pavey, S., Ksander, B. R., Krijgsman, E., et al. (2003). Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. International Journal of Cancer, 106(4), 472–479.

    Google Scholar 

  72. Mooy, C. M., & De Jong, P. T. (1996). Prognostic parameters in uveal melanoma: A review. Survey of Ophthalmology, 41(3), 215–228.

    CAS  PubMed  Google Scholar 

  73. Kim, Y. H., Petko, Z., Dzieciatkowski, S., Lin, L., Ghiassi, M., Stain, S., et al. (2006). CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes, Chromosomes & Cancer, 45(8), 781–789.

    CAS  Google Scholar 

  74. Ebert, M. P., Mooney, S. H., Tonnes-Priddy, L., Lograsso, J., Hoffmann, J., Chen, J., et al. (2005). Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia, 7(8), 771–778.

    CAS  PubMed  Google Scholar 

  75. Harris, A. L. (2002). Hypoxia—A key regulatory factor in tumour growth. Nature Reviews, 2(1), 38–47.

    CAS  PubMed  Google Scholar 

  76. Ohh, M. (2006). Ubiquitin pathway in VHL cancer syndrome. Neoplasia, 8(8), 623–629.

    CAS  PubMed  Google Scholar 

  77. Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684.

    CAS  PubMed  Google Scholar 

  78. Kim, W. Y., & Kaelin, W. G. (2004). Role of VHL gene mutation in human cancer. Journal of Clinical Oncology, 22(24), 4991–5004.

    CAS  PubMed  Google Scholar 

  79. Russell, R. C., & Ohh, M. (2007). The role of VHL in the regulation of E-cadherin: A new connection in an old pathway. Cell Cycle, 6(1), 56–59.

    CAS  PubMed  Google Scholar 

  80. Knudson, A. G., Jr. (1979). Hereditary cancer. JAMA, 241(3), 279.

    PubMed  Google Scholar 

  81. Thelen, P., Hemmerlein, B., Kugler, A., Seiler, T., Ozisik, R., Kallerhoff, M., et al. (1999). Quantification by competitive quantitative RT-PCR of VEGF121 and VEGF165 in renal cell carcinoma. Anticancer Research, 19(2C), 1563–1565.

    CAS  PubMed  Google Scholar 

  82. Banks, R. E., Tirukonda, P., Taylor, C., Hornigold, N., Astuti, D., Cohen, D., et al. (2006). Genetic and epigenetic analysis of von Hippel–Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Research, 66(4), 2000–2011.

    CAS  PubMed  Google Scholar 

  83. Kim, J. H., Jung, C. W., Cho, Y. H., Lee, J., Lee, S. H., Kim, H. Y., et al. (2005). Somatic VHL alteration and its impact on prognosis in patients with clear cell renal cell carcinoma. Oncology Reports, 13(5), 859–864.

    CAS  PubMed  Google Scholar 

  84. Rini, B. I., Jaeger, E., Weinberg, V., Sein, N., Chew, K., Fong, K., et al. (2006). Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: İmpact of patient characteristics and Von Hippel–Lindau gene status. BJU International, 98(4), 756–762.

    CAS  PubMed  Google Scholar 

  85. Lassaletta, L., Bello, M. J., Del Rio, L., Alfonso, C., Roda, J. M., Rey, J. A., et al. (2006). DNA methylation of multiple genes in vestibular schwannoma: Relationship with clinical and radiological findings. Otology & Neurotology, 27(8), 1180–1185.

    Google Scholar 

  86. Cao, Z., Song, J. H., Kim, C. J., Cho, Y. G., Kim, S. Y., Nam, S. W., et al. (2008). Genetic and epigenetic analysis of the VHL gene in gastric cancers. Acta Oncológica, 47(8), 1551–1556.

    CAS  PubMed  Google Scholar 

  87. Xu, X. L., Yu, J., Zhang, H. Y., Sun, M. H., Gu, J., Du, X., et al. (2004). Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World Journal of Gastroenterology, 10(23), 3441–3454.

    CAS  PubMed  Google Scholar 

  88. Van Lint, J., Rykx, A., Maeda, Y., Vantus, T., Sturany, S., Malhotra, V., et al. (2002). Protein kinase D: An intracellular traffic regulator on the move. Trends in Cell Biology, 12(4), 193–200.

    PubMed  Google Scholar 

  89. Rozengurt, E., Rey, O., & Waldron, R. T. (2005). Protein kinase D signaling. The Journal of Biological Chemistry, 280(14), 13205–13208.

    CAS  PubMed  Google Scholar 

  90. Kim, M., Jang, H. R., Kim, J. H., Noh, S. M., Song, K. S., Cho, J. S., et al. (2008). Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis, 29(3), 629–637.

    CAS  PubMed  Google Scholar 

  91. Jaggi, M., Rao, P. S., Smith, D. J., Wheelock, M. J., Johnson, K. R., Hemstreet, G. P., et al. (2005). E-cadherin phosphorylation by protein kinase D1/protein kinase C{mu} is associated with altered cellular aggregation and motility in prostate cancer. Cancer Research, 65(2), 483–492.

    CAS  PubMed  Google Scholar 

  92. Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.

    PubMed  Google Scholar 

  93. Jaggi, M., Rao, P. S., Smith, D. J., Hemstreet, G. P., & Balaji, K. C. (2003). Protein kinase C mu is down-regulated in androgen-independent prostate cancer. Biochemical and Biophysical Research Communications, 307(2), 254–260.

    CAS  PubMed  Google Scholar 

  94. Zou, Z., Anisowicz, A., Hendrix, M. J., Thor, A., Neveu, M., Sheng, S., et al. (1994). Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science, 263(5146), 526–529.

    CAS  PubMed  Google Scholar 

  95. Futscher, B. W., Oshiro, M. M., Wozniak, R. J., Holtan, N., Hanigan, C. L., Duan, H., et al. (2002). Role for DNA methylation in the control of cell type specific maspin expression. Nature Genetics, 31(2), 175–179.

    CAS  PubMed  Google Scholar 

  96. Sheng, S., Carey, J., Seftor, E. A., Dias, L., Hendrix, M. J., & Sager, R. (1996). Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11669–11674.

    CAS  PubMed  Google Scholar 

  97. Xia, W., Lau, Y. K., Hu, M. C., Li, L., Johnston, D. A., Sheng, S., et al. (2000). High tumoral maspin expression is associated with improved survival of patients with oral squamous cell carcinoma. Oncogene, 19(20), 2398–2403.

    CAS  PubMed  Google Scholar 

  98. Maass, N., Hojo, T., Rosel, F., Ikeda, T., Jonat, W., & Nagasaki, K. (2001). Down regulation of the tumor suppressor gene maspin in breast carcinoma is associated with a higher risk of distant metastasis. Clinical Biochemistry, 34(4), 303–307.

    CAS  PubMed  Google Scholar 

  99. Maass, N., Teffner, M., Rosel, F., Pawaresch, R., Jonat, W., Nagasaki, K., et al. (2001). Decline in the expression of the serine proteinase inhibitor maspin is associated with tumour progression in ductal carcinomas of the breast. The Journal of Pathology, 195(3), 321–326.

    CAS  PubMed  Google Scholar 

  100. Shi, H. Y., Zhang, W., Liang, R., Abraham, S., Kittrell, F. S., Medina, D., et al. (2001). Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer Research, 61(18), 6945–6951.

    CAS  PubMed  Google Scholar 

  101. Seftor, R. E., Seftor, E. A., Sheng, S., Pemberton, P. A., Sager, R., & Hendrix, M. J. (1998). Maspin suppresses the invasive phenotype of human breast carcinoma. Cancer Research, 58(24), 5681–5685.

    CAS  PubMed  Google Scholar 

  102. Maass, N., Hojo, T., Ueding, M., Luttges, J., Kloppel, G., Jonat, W., et al. (2001). Expression of the tumor suppressor gene Maspin in human pancreatic cancers. Clinical Cancer Research, 7(4), 812–817.

    CAS  PubMed  Google Scholar 

  103. Sood, A. K., Fletcher, M. S., Gruman, L. M., Coffin, J. E., Jabbari, S., Khalkhali-Ellis, Z., et al. (2002). The paradoxical expression of maspin in ovarian carcinoma. Clinical Cancer Research, 8(9), 2924–2932.

    CAS  PubMed  Google Scholar 

  104. Ogasawara, S., Maesawa, C., Yamamoto, M., Akiyama, Y., Wada, K., Fujisawa, K., et al. (2004). Disruption of cell-type-specific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers. Oncogene, 23(5), 1117–1124.

    CAS  PubMed  Google Scholar 

  105. Zhang, M., Volpert, O., Shi, Y. H., & Bouck, N. (2000). Maspin is an angiogenesis inhibitor. Nature Medicine, 6(2), 196–199.

    PubMed  Google Scholar 

  106. Zhang, M., Maass, N., Magit, D., & Sager, R. (1997). Transactivation through Ets and Ap1 transcription sites determines the expression of the tumor-suppressing gene maspin. Cell Growth & Differentiation, 8(2), 179–186.

    CAS  Google Scholar 

  107. Domann, F. E., Rice, J. C., Hendrix, M. J., & Futscher, B. W. (2000). Epigenetic silencing of maspin gene expression in human breast cancers. International Journal of Cancer, 85(6), 805–810.

    CAS  Google Scholar 

  108. Murakami, J., Asaumi, J., Maki, Y., Tsujigiwa, H., Kuroda, M., Nagai, N., et al. (2004). Effects of demethylating agent 5-aza-2(')-deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines. Oral Oncology, 40(6), 597–603.

    CAS  PubMed  Google Scholar 

  109. Akiyama, Y., Maesawa, C., Ogasawara, S., Terashima, M., & Masuda, T. (2003). Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. The American Journal of Pathology, 163(5), 1911–1919.

    CAS  PubMed  Google Scholar 

  110. Terashima, M., Maesawa, C., Oyama, K., Ohtani, S., Akiyama, Y., Ogasawara, S., et al. (2005). Gene expression profiles in human gastric cancer: Expression of maspin correlates with lymph node metastasis. British Journal of Cancer, 92(6), 1130–1136.

    CAS  PubMed  Google Scholar 

  111. Wada, K., Maesawa, C., Akasaka, T., & Masuda, T. (2004). Aberrant expression of the maspin gene associated with epigenetic modification in melanoma cells. The Journal of Investigative Dermatology, 122(3), 805–811.

    CAS  PubMed  Google Scholar 

  112. Noda, M., Kitayama, H., Matsuzaki, T., Sugimoto, Y., Okayama, H., Bassin, R. H., et al. (1989). Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proceedings of the National Academy of Sciences of the United States of America, 86(1), 162–166.

    CAS  PubMed  Google Scholar 

  113. Takahashi, C., Sheng, Z., Horan, T. P., Kitayama, H., Maki, M., Hitomi, K., et al. (1998). Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13221–13226.

    CAS  PubMed  Google Scholar 

  114. Oh, J., Takahashi, R., Kondo, S., Mizoguchi, A., Adachi, E., Sasahara, R. M., et al. (2001). The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell, 107(6), 789–800.

    CAS  PubMed  Google Scholar 

  115. Masui, T., Doi, R., Koshiba, T., Fujimoto, K., Tsuji, S., Nakajima, S., et al. (2003). RECK expression in pancreatic cancer: İts correlation with lower invasiveness and better prognosis. Clinical Cancer Research, 9(5), 1779–1784.

    CAS  PubMed  Google Scholar 

  116. Span, P. N., Sweep, C. G., Manders, P., Beex, L. V., Leppert, D., & Lindberg, R. L. (2003). Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: A prognostic marker for good clinical outcome in human breast carcinoma. Cancer, 97(11), 2710–2715.

    CAS  PubMed  Google Scholar 

  117. Takenaka, K., Ishikawa, S., Kawano, Y., Yanagihara, K., Miyahara, R., Otake, Y., et al. (2004). Expression of a novel matrix metalloproteinase regulator, RECK, and its clinical significance in resected non-small cell lung cancer. European Journal of Cancer, 40(10), 1617–1623.

    CAS  PubMed  Google Scholar 

  118. Takeuchi, T., Hisanaga, M., Nagao, M., Ikeda, N., Fujii, H., Koyama, F., et al. (2004). The membrane-anchored matrix metalloproteinase (MMP) regulator RECK in combination with MMP-9 serves as an informative prognostic indicator for colorectal cancer. Clinical Cancer Research, 10(16), 5572–5579.

    CAS  PubMed  Google Scholar 

  119. Takenaka, K., Ishikawa, S., Yanagihara, K., Miyahara, R., Hasegawa, S., Otake, Y., et al. (2005). Prognostic significance of reversion-inducing cysteine-rich protein with Kazal motifs expression in resected pathologic stage IIIA N2 non-small-cell lung cancer. Annals of Surgical Oncology, 12(10), 817–824.

    PubMed  Google Scholar 

  120. van der Jagt, M. F., Sweep, F. C., Waas, E. T., Hendriks, T., Ruers, T. J., Merry, A. H., et al. (2006). Correlation of reversion-inducing cysteine-rich protein with kazal motifs (RECK) and extracellular matrix metalloproteinase inducer (EMMPRIN), with MMP-2, MMP-9, and survival in colorectal cancer. Cancer Letters, 237(2), 289–297.

    PubMed  Google Scholar 

  121. Cho, C. Y., Wang, J. H., Chang, H. C., Chang, C. K., & Hung, W. C. (2007). Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. Journal of Cellular Physiology, 213(1), 65–69.

    CAS  PubMed  Google Scholar 

  122. Chang, H. C., Cho, C. Y., & Hung, W. C. (2007). Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Science, 98(2), 169–173.

    CAS  PubMed  Google Scholar 

  123. Ichikawa, T., Kyprianou, N., & Isaacs, J. T. (1990). Genetic instability and the acquisition of metastatic ability by rat mammary cancer cells following v-H-ras oncogene transfection. Cancer Research, 50(19), 6349–6357.

    CAS  PubMed  Google Scholar 

  124. Chang, H. C., Liu, L. T., & Hung, W. C. (2004). Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cellular Signalling, 16(6), 675–679.

    CAS  PubMed  Google Scholar 

  125. Chang, H. C., Cho, C. Y., & Hung, W. C. (2006). Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Research, 66(17), 8413–8420.

    CAS  PubMed  Google Scholar 

  126. Van Veldhuizen, P. J., Sadasivan, R., Cherian, R., & Wyatt, A. (1996). Urokinase-type plasminogen activator expression in human prostate carcinomas. The American Journal of the Medical Sciences, 312(1), 8–11.

    PubMed  Google Scholar 

  127. Lakka, S. S., Bhattacharya, A., Mohanam, S., Boyd, D., & Rao, J. S. (2001). Regulation of the uPA gene in various grades of human glioma cells. International Journal of Oncology, 18(1), 71–79.

    CAS  PubMed  Google Scholar 

  128. Look, M. P., & Foekens, J. A. (1999). Clinical relevance of the urokinase plasminogen activator system in breast cancer. APMIS, 107(1), 150–159.

    CAS  PubMed  Google Scholar 

  129. Pyke, C., Kristensen, P., Ralfkiaer, E., Grondahl-Hansen, J., Eriksen, J., Blasi, F., et al. (1991). Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. The American Journal of Pathology, 138(5), 1059–1067.

    CAS  PubMed  Google Scholar 

  130. Skriver, L., Larsson, L. I., Kielberg, V., Nielsen, L. S., Andresen, P. B., Kristensen, P., et al. (1984). Immunocytochemical localization of urokinase-type plasminogen activator in Lewis lung carcinoma. The Journal of Cell Biology, 99(2), 753–757.

    CAS  PubMed  Google Scholar 

  131. Rabbani, S. A., & Mazar, A. P. (2001). The role of the plasminogen activation system in angiogenesis and metastasis. Surgical Oncology Clinics of North America, 10(2), 393–415. x.

    CAS  PubMed  Google Scholar 

  132. Stewart, D. A., Cooper, C. R., & Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reproductive Biology and Endocrinology, 2, 2.

    PubMed  Google Scholar 

  133. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63(7), 1684–1695.

    CAS  PubMed  Google Scholar 

  134. Hsu, D. W., Efird, J. T., & Hedley-Whyte, E. T. (1995). Prognostic role of urokinase-type plasminogen activator in human gliomas. The American Journal of Pathology, 147(1), 114–123.

    CAS  PubMed  Google Scholar 

  135. Miyake, H., Hara, I., Yamanaka, K., Arakawa, S., & Kamidono, S. (1999). Elevation of urokinase-type plasminogen activator and its receptor densities as new predictors of disease progression and prognosis in men with prostate cancer. International Journal of Oncology, 14(3), 535–541.

    CAS  PubMed  Google Scholar 

  136. Schweinitz, A., Steinmetzer, T., Banke, I. J., Arlt, M. J., Sturzebecher, A., Schuster, O., et al. (2004). Design of novel and selective inhibitors of urokinase-type plasminogen activator with improved pharmacokinetic properties for use as antimetastatic agents. The Journal of Biological Chemistry, 279(32), 33613–33622.

    CAS  PubMed  Google Scholar 

  137. Pulukuri, S. M., Gondi, C. S., Lakka, S. S., Jutla, A., Estes, N., Gujrati, M., et al. (2005). RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. The Journal of Biological Chemistry, 280(43), 36529–36540.

    CAS  PubMed  Google Scholar 

  138. Gondi, C. S., Lakka, S. S., Yanamandra, N., Siddique, K., Dinh, D. H., Olivero, W. C., et al. (2003). Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene, 22(38), 5967–5975.

    CAS  PubMed  Google Scholar 

  139. Pakneshan, P., Tetu, B., & Rabbani, S. A. (2004). Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma. Clinical Cancer Research, 10(9), 3035–3041.

    CAS  PubMed  Google Scholar 

  140. Guo, Y., Pakneshan, P., Gladu, J., Slack, A., Szyf, M., & Rabbani, S. A. (2002). Regulation of DNA methylation in human breast cancer. Effect on the urokinase-type plasminogen activator gene production and tumor invasion. The Journal of Biological Chemistry, 277(44), 41571–41579.

    CAS  PubMed  Google Scholar 

  141. Pakneshan, P., Xing, R. H., & Rabbani, S. A. (2003). Methylation status of uPA promoter as a molecular mechanism regulating prostate cancer invasion and growth in vitro and in vivo. The FASEB Journal, 17(9), 1081–1088.

    CAS  PubMed  Google Scholar 

  142. Detich, N., Hamm, S., Just, G., Knox, J. D., & Szyf, M. (2003). The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: A candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. The Journal of Biological Chemistry, 278(23), 20812–20820.

    CAS  PubMed  Google Scholar 

  143. Pakneshan, P., Szyf, M., Farias-Eisner, R., & Rabbani, S. A. (2004). Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. The Journal of Biological Chemistry, 279(30), 31735–31744.

    CAS  PubMed  Google Scholar 

  144. Slack, A., Bovenzi, V., Bigey, P., Ivanov, M. A., Ramchandani, S., Bhattacharya, S., et al. (2002). Antisense MBD2 gene therapy inhibits tumorigenesis. The Journal of Gene Medicine, 4(4), 381–389.

    CAS  PubMed  Google Scholar 

  145. Sansom, O. J., Berger, J., Bishop, S. M., Hendrich, B., Bird, A., & Clarke, A. R. (2003). Deficiency of Mbd2 suppresses intestinal tumorigenesis. Nature Genetics, 34(2), 145–147.

    CAS  PubMed  Google Scholar 

  146. Shukeir, N., Pakneshan, P., Chen, G., Szyf, M., & Rabbani, S. A. (2006). Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Research, 66(18), 9202–9210.

    CAS  PubMed  Google Scholar 

  147. Brehmer, B., Biesterfeld, S., & Jakse, G. (2003). Expression of matrix metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and -2) in prostate cancer tissue. Prostate Cancer and Prostatic Diseases, 6(3), 217–222.

    CAS  PubMed  Google Scholar 

  148. Ogishima, T., Shiina, H., Breault, J. E., Tabatabai, L., Bassett, W. W., Enokida, H., et al. (2005). Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clinical Cancer Research, 11(3), 1028–1036.

    CAS  PubMed  Google Scholar 

  149. Tokizane, T., Shiina, H., Igawa, M., Enokida, H., Urakami, S., Kawakami, T., et al. (2005). Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clinical Cancer Research, 11(16), 5793–5801.

    CAS  PubMed  Google Scholar 

  150. Liu, H., Liu, W., Wu, Y., Zhou, Y., Xue, R., Luo, C., et al. (2005). Loss of epigenetic control of synuclein-gamma gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Research, 65(17), 7635–7643.

    CAS  PubMed  Google Scholar 

  151. Paredes, J., Albergaria, A., Oliveira, J. T., Jeronimo, C., Milanezi, F., & Schmitt, F. C. (2005). P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clinical Cancer Research, 11(16), 5869–5877.

    CAS  PubMed  Google Scholar 

  152. Nishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H., et al. (2005). Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Research, 65(6), 2115–2124.

    CAS  PubMed  Google Scholar 

  153. Szyf, M. (2005). DNA methylation and demethylation as targets for anticancer therapy. Biochemistry, 70(5), 533–549.

    CAS  PubMed  Google Scholar 

  154. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 438(7070), 932–936.

    CAS  PubMed  Google Scholar 

  155. Deroanne, C. F., Bonjean, K., Servotte, S., Devy, L., Colige, A., Clausse, N., et al. (2002). Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene, 21(3), 427–436.

    CAS  PubMed  Google Scholar 

  156. Boehm, T., Folkman, J., Browder, T., & O’Reilly, M. S. (1997). Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 390(6658), 404–407.

    CAS  PubMed  Google Scholar 

  157. Sahin, M., Sahin, E., & Gumuslu, S. (2009). Cyclooxygenase-2 in cancer and angiogenesis. Angiology, 60(2), 242–253.

    CAS  PubMed  Google Scholar 

  158. Qian, D. Z., Wang, X., Kachhap, S. K., Kato, Y., Wei, Y., Zhang, L., et al. (2004). The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Research, 64(18), 6626–6634.

    CAS  PubMed  Google Scholar 

  159. Miao, H. Q., Soker, S., Feiner, L., Alonso, J. L., Raper, J. A., & Klagsbrun, M. (1999). Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. The Journal of Cell Biology, 146(1), 233–242.

    CAS  PubMed  Google Scholar 

  160. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84(24), 9265–9269.

    CAS  PubMed  Google Scholar 

  161. Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., et al. (1998). Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. The Journal of Clinical Investigation, 101(11), 2567–2578.

    CAS  PubMed  Google Scholar 

  162. Duplain, H., Burcelin, R., Sartori, C., Cook, S., Egli, M., Lepori, M., et al. (2001). Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation, 104(3), 342–345.

    CAS  PubMed  Google Scholar 

  163. Rossig, L., Li, H., Fisslthaler, B., Urbich, C., Fleming, I., Forstermann, U., et al. (2002). Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circulation Research, 91(9), 837–844.

    PubMed  Google Scholar 

  164. Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nature Reviews, 3(1), 46–54.

    CAS  PubMed  Google Scholar 

  165. Holash, J., Wiegand, S. J., & Yancopoulos, G. D. (1999). New model of tumor angiogenesis: Dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene, 18(38), 5356–5362.

    CAS  PubMed  Google Scholar 

  166. Gartel, A. L., & Radhakrishnan, S. K. (2005). Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Research, 65(10), 3980–3985.

    CAS  PubMed  Google Scholar 

  167. Garner, E., & Raj, K. (2008). Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death. Cell Cycle, 7(3), 277–282.

    CAS  PubMed  Google Scholar 

  168. Hellebrekers, D. M., Castermans, K., Vire, E., Dings, R. P., Hoebers, N. T., Mayo, K. H., et al. (2006). Epigenetic regulation of tumor endothelial cell anergy: Silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Research, 66(22), 10770–10777.

    CAS  PubMed  Google Scholar 

  169. Friedrich, M. G., Chandrasoma, S., Siegmund, K. D., Weisenberger, D. J., Cheng, J. C., Toma, M. I., et al. (2005). Prognostic relevance of methylation markers in patients with non-muscle invasive bladder carcinoma. European Journal of Cancer, 41(17), 2769–2778.

    CAS  PubMed  Google Scholar 

  170. Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 24(1), 88–91.

    CAS  PubMed  Google Scholar 

  171. Robertson, K. D., Ait-Si-Ali, S., Yokochi, T., Wade, P. A., Jones, P. L., & Wolffe, A. P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 25(3), 338–342.

    CAS  PubMed  Google Scholar 

  172. Franklin, S. L., Ferry, R. J., Jr., & Cohen, P. (2003). Rapid insulin-like growth factor (IGF)-independent effects of IGF binding protein-3 on endothelial cell survival. The Journal of Clinical Endocrinology and Metabolism, 88(2), 900–907.

    CAS  PubMed  Google Scholar 

  173. Iwatsuki, K., Tanaka, K., Kaneko, T., Kazama, R., Okamoto, S., Nakayama, Y., et al. (2005). Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene, 24(7), 1129–1137.

    CAS  PubMed  Google Scholar 

  174. Chang, Y. S., Wang, L., Liu, D., Mao, L., Hong, W. K., Khuri, F. R., et al. (2002). Correlation between insulin-like growth factor-binding protein-3 promoter methylation and prognosis of patients with stage I non-small cell lung cancer. Clinical Cancer Research, 8(12), 3669–3675.

    CAS  PubMed  Google Scholar 

  175. Bocci, G., Francia, G., Man, S., Lawler, J., & Kerbel, R. S. (2003). Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12917–12922.

    CAS  PubMed  Google Scholar 

  176. Passegue, E., & Wagner, E. F. (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. The EMBO Journal, 19(12), 2969–2979.

    CAS  PubMed  Google Scholar 

  177. Li, Q., Ahuja, N., Burger, P. C., & Issa, J. P. (1999). Methylation and silencing of the thrombospondin-1 promoter in human cancer. Oncogene, 18(21), 3284–3289.

    CAS  PubMed  Google Scholar 

  178. Yang, M. Y., Liu, T. C., Chang, J. G., Lin, P. M., & Lin, S. F. (2003). JunB gene expression is inactivated by methylation in chronic myeloid leukemia. Blood, 101(8), 3205–3211.

    CAS  PubMed  Google Scholar 

  179. Chen, T., Turner, J., McCarthy, S., Scaltriti, M., Bettuzzi, S., & Yeatman, T. J. (2004). Clusterin-mediated apoptosis is regulated by adenomatous polyposis coli and is p21 dependent but p53 independent. Cancer Research, 64(20), 7412–7419.

    CAS  PubMed  Google Scholar 

  180. Zhang, H., Kim, J. K., Edwards, C. A., Xu, Z., Taichman, R., & Wang, C. Y. (2005). Clusterin inhibits apoptosis by interacting with activated Bax. Nature Cell Biology, 7(9), 909–915.

    CAS  PubMed  Google Scholar 

  181. Jackson, J. K., Gleave, M. E., Gleave, J., & Burt, H. M. (2005). The inhibition of angiogenesis by antisense oligonucleotides to clusterin. Angiogenesis, 8(3), 229–238.

    CAS  PubMed  Google Scholar 

  182. Sivamurthy, N., Stone, D. H., LoGerfo, F. W., & Quist, W. C. (2001). Apolipoprotein J inhibits the migration and adhesion of endothelial cells. Surgery, 130(2), 204–209.

    CAS  PubMed  Google Scholar 

  183. Leskov, K. S., Klokov, D. Y., Li, J., Kinsella, T. J., & Boothman, D. A. (2003). Synthesis and functional analyses of nuclear clusterin, a cell death protein. The Journal of Biological Chemistry, 278(13), 11590–11600.

    CAS  PubMed  Google Scholar 

  184. Handford, P. A. (2000). Fibrillin-1, a calcium binding protein of extracellular matrix. Biochimica et Biophysica Acta, 1498(2–3), 84–90.

    CAS  PubMed  Google Scholar 

  185. Carta, L., Pereira, L., Arteaga-Solis, E., Lee-Arteaga, S. Y., Lenart, B., Starcher, B., et al. (2006). Fibrillins 1 and 2 perform partially overlapping functions during aortic development. The Journal of Biological Chemistry, 281(12), 8016–8023.

    CAS  PubMed  Google Scholar 

  186. Wilson, D. G., Bellamy, M. F., Ramsey, M. W., Goodfellow, J., Brownlee, M., Davies, S., et al. (1999). Endothelial function in Marfan syndrome: Selective impairment of flow-mediated vasodilation. Circulation, 99(7), 909–915.

    CAS  PubMed  Google Scholar 

  187. Coppock, D. L., Cina-Poppe, D., & Gilleran, S. (1998). The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: Thioredoxin and ERV1. Genomics, 54(3), 460–468.

    CAS  PubMed  Google Scholar 

  188. Chiba, T., Yokosuka, O., Fukai, K., Kojima, H., Tada, M., Arai, M., et al. (2004). Cell growth inhibition and gene expression induced by the histone deacetylase inhibitor, trichostatin A, on human hepatoma cells. Oncology, 66(6), 481–491.

    CAS  PubMed  Google Scholar 

  189. Lund, P., Weisshaupt, K., Mikeska, T., Jammas, D., Chen, X., Kuban, R. J., et al. (2006). Oncogenic HRAS suppresses clusterin expression through promoter hypermethylation. Oncogene, 25(35), 4890–4903.

    CAS  PubMed  Google Scholar 

  190. Lehnertz, B., Ueda, Y., Derijck, A. A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., et al. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Current Biology, 13(14), 1192–1200.

    CAS  PubMed  Google Scholar 

  191. Rountree, M. R., Bachman, K. E., & Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics, 25(3), 269–277.

    CAS  PubMed  Google Scholar 

  192. Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301(5895), 89–92.

    CAS  PubMed  Google Scholar 

  193. Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L., & Jaenisch, R. (1998). DNA hypomethylation leads to elevated mutation rates. Nature, 395(6697), 89–93.

    CAS  PubMed  Google Scholar 

  194. Bachman, K. E., Park, B. H., Rhee, I., Rajagopalan, H., Herman, J. G., Baylin, S. B., et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell, 3(1), 89–95.

    CAS  PubMed  Google Scholar 

  195. Butler, L. M., Agus, D. B., Scher, H. I., Higgins, B., Rose, A., Cordon-Cardo, C., et al. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Research, 60(18), 5165–5170.

    CAS  PubMed  Google Scholar 

  196. Saaristo, A., Karpanen, T., & Alitalo, K. (2000). Mechanisms of angiogenesis and their use in the inhibition of tumor growth and metastasis. Oncogene, 19(53), 6122–6129.

    CAS  PubMed  Google Scholar 

  197. Grady, W. M. (2005). Epigenetic events in the colorectum and in colon cancer. Biochemical Society Transactions, 33(Pt 4), 684–688.

    CAS  PubMed  Google Scholar 

  198. Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., & Herman, J. G. (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Human Molecular Genetics, 10(7), 687–692.

    CAS  PubMed  Google Scholar 

  199. Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer—A mechanism for early oncogenic pathway addiction? Nature Reviews, 6(2), 107–116.

    CAS  PubMed  Google Scholar 

  200. Maier, S., Dahlstroem, C., Haefliger, C., Plum, A., & Piepenbrock, C. (2005). Identifying DNA methylation biomarkers of cancer drug response. American Journal of Pharmacogenomics, 5(4), 223–232.

    CAS  PubMed  Google Scholar 

  201. Weiser, T. S., Guo, Z. S., Ohnmacht, G. A., Parkhurst, M. L., Tong-On, P., Marincola, F. M., et al. (2001). Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. Journal of Immunotherapy, 24(2), 151–161.

    CAS  PubMed  Google Scholar 

  202. Gagnon, J., Shaker, S., Primeau, M., Hurtubise, A., & Momparler, R. L. (2003). Interaction of 5-aza-2'-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anti-Cancer Drugs, 14(3), 193–202.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Şahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şahin, M., Şahin, E., Gümüşlü, S. et al. DNA methylation or histone modification status in metastasis and angiogenesis-related genes: a new hypothesis on usage of DNMT inhibitors and S-adenosylmethionine for genome stability. Cancer Metastasis Rev 29, 655–676 (2010). https://doi.org/10.1007/s10555-010-9253-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9253-0

Keywords

Navigation