Skip to main content

Advertisement

Log in

SV40 small T antigen and PP2A phosphatase in cell transformation

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The SV40 early region protein, SV40 small t antigen, promotes cell transformation through negative regulation of the protein phosphatase 2A (PP2A) family of serine–threonine phosphatases. More recently, reduced levels of PP2A activity have been found in different types of human cancer. This occurs either through inactivating mutations of PP2A structural subunits, or by upregulation of the cellular PP2A inhibitors, CIP2A and SET. Several distinct PP2A complexes have been identified that contribute directly to tumor suppression by regulating specific phosphorylation events. These studies provide us with new insights into the role of protein phosphatases in cancer initiation and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

adenomatous polyposis coli

CIP2A:

cancerous inhibitor of PP2A

CREB:

cAMP-responsive element binding protein

ERK:

extracellular signal-regulated kinase

HEAT:

Huntingtin, elongation factor 3, PP2A A subunit, and TOR kinase

HPV:

human papillomavirus

hTERT:

human telomerase catalytic subunit

KSR:

kinase suppressor of Ras

LT:

large T antigen

MAPK:

mitogen-activated protein kinase

NFkB:

nuclear factor kappa B

PI3K:

phosphatidylinositol 3-kinase

PP2A:

protein phosphatase type 2A

ST:

small T antigen

SV40:

simian virus 40

TOR:

target of rapamycin

References

  1. Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., et al. (2002). Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Molecular and Cellular Biology, 22(7), 2111–2123.

    Article  PubMed  CAS  Google Scholar 

  2. Kleinberger, T., & Shenk, T. (1993). Adenovirus e4orf4 protein binds to protein phosphatase 2A, and the complex down regulates e1a-enhanced Junb transcription. Journal of Virology, 67(12), 7556–7560.

    PubMed  CAS  Google Scholar 

  3. Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., et al. (1990). Polyoma small and middle t antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell, 60(1), 167–176.

    Article  PubMed  CAS  Google Scholar 

  4. Rundell, K. (1987). Complete interaction of cellular 56,000- and 32,000-mr proteins with simian virus 40 small-t antigen in productively infected cells. Journal of Virology, 61(4), 1240–1243.

    PubMed  CAS  Google Scholar 

  5. Yu, J., Boyapati, A., & Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology, 290(2), 192–198.

    Article  PubMed  CAS  Google Scholar 

  6. Calin, G. A., Di Iasio, M. G., Caprini, E., Vorechovsky, I., Natali, P. G., Sozzi, G., et al. (2000). Low frequency of alterations of the alpha (PPP2r1A) and beta (PPP2r1B) isoforms of the subunit a of the serine–threonine phosphatase 2A in human neoplasms. Oncogene, 19(9), 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  7. Takagi, Y., Futamura, M., Yamaguchi, K., Aoki, S., Takahashi, T., & Saji, S. (2000). Alterations of the PPP2r1B gene located at 11q23 in human colorectal cancers. Gut, 47(2), 268–271.

    Article  PubMed  CAS  Google Scholar 

  8. Tamaki, M., Goi, T., Hirono, Y., Katayama, K., & Yamaguchi, A. (2004). Ppp2r1b gene alterations inhibit interaction of PP2A Abeta and PP2A C proteins in colorectal cancers. Oncology Reports, 11(3), 655–659.

    PubMed  CAS  Google Scholar 

  9. Wang, S. S., Esplin, E. D., Li, J. L., Huang, L., Gazdar, A., Minna, J., et al. (1998). Alterations of the PPP2r1B gene in human lung and colon cancer. Science, 282(5387), 284–287.

    Article  PubMed  CAS  Google Scholar 

  10. Ruediger, R., Pham, H. T., & Walter, G. (2001). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the a beta subunit gene. Oncogene, 20(15), 1892–1899.

    Article  PubMed  CAS  Google Scholar 

  11. Ruediger, R., Pham, H. T., & Walter, G. (2001). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the Aalpha subunit gene. Oncogene, 20(1), 10–15.

    Article  PubMed  CAS  Google Scholar 

  12. Sweet, B. H., & Hilleman, M. R. (1960). The vacuolating virus, SV40. Proceedings of the Society for Experimental Biology and Medicine, 105, 420–427.

    PubMed  CAS  Google Scholar 

  13. Eddy, B. E., Borman, G. S., Berkeley, W. H., & Young, R. D. (1961). Tumors induced in hamsters by injection of rhesus monkey kidney cell extracts. Proceedings of the Society for Experimental Biology and Medicine, 107, 191–197.

    PubMed  CAS  Google Scholar 

  14. Eddy, B. E., Borman, G. S., Grubbs, G. E., & Young, R. D. (1962). Identification of the oncogenic substance in rhesus monkey kidney cell culture as simian virus 40. Virology, 17, 65–75.

    Article  PubMed  CAS  Google Scholar 

  15. Shein, H. M., & Enders, J. F. (1962). Transformation induced by simian virus 40 in human renal cell cultures. I. Morphology and growth characteristics. Proceedings of the National Academy of Sciences of the United States of America, 48, 1164–1172.

    Article  PubMed  CAS  Google Scholar 

  16. Rabson, A. S., O’conor, G. T., Kirschstein, R. L., & Branigan, W. J. (1962). Papillary ependymomas produced in Rattus (mastomys) natalensis inoculated with vacuolating virus (SV40). Journal of National Cancer Institute, 29, 765–787.

    CAS  Google Scholar 

  17. Rundell, K., & Parakati, R. (2001). The role of the SV40 ST antigen in cell growth promotion and transformation. Seminars in Cancer Biology, 11(1), 5–13.

    Article  PubMed  CAS  Google Scholar 

  18. Sullivan, C. S., & Pipas, J. M. (2002). T antigens of simian virus 40: Molecular chaperones for viral replication and tumorigenesis. Microbiology and Molecular Biology Reviews, 66(2), 179–202.

    Article  PubMed  CAS  Google Scholar 

  19. Hirakawa, T., & Ruley, H. E. (1988). Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proceedings of the National Academy of Sciences of the United States of America, 85(5), 1519–1523.

    Article  PubMed  CAS  Google Scholar 

  20. Michalovitz, D., Fischer-Fantuzzi, L., Vesco, C., Pipas, J. M., & Oren, M. (1987). Activated ha-ras can cooperate with defective simian virus 40 in the transformation of nonestablished rat embryo fibroblasts. Journal of Virology, 61(8), 2648–2654.

    PubMed  CAS  Google Scholar 

  21. Sager, R., Tanaka, K., Lau, C. C., Ebina, Y., & Anisowicz, A. (1983). Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proceedings of the National Academy of Sciences of the United States of America, 80(24), 7601–7605.

    Article  PubMed  CAS  Google Scholar 

  22. Chang, L. S., Pan, S., Pater, M. M., & Di Mayorca, G. (1985). Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology, 146(2), 246–261.

    Article  PubMed  CAS  Google Scholar 

  23. Lustig, A. J. (1999). Crisis intervention: The role of telomerase. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3339–3341.

    Article  PubMed  CAS  Google Scholar 

  24. Rangarajan, A., Hong, S. J., Gifford, A., & Weinberg, R. A. (2004). Species- and cell type-specific requirements for cellular transformation. Cancer Cells, 6(2), 171–183.

    Article  CAS  Google Scholar 

  25. Voorhoeve, P. M., & Agami, R. (2003). The tumor-suppressive functions of the human ink4a locus. Cancer Cells, 4(4), 311–319.

    Article  CAS  Google Scholar 

  26. Mungre, S., Enderle, K., Turk, B., Porras, A., Wu, Y. Q., Mumby, M. C., et al. (1994). Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. Journal of Virology, 68(3), 1675–1681.

    PubMed  CAS  Google Scholar 

  27. Porras, A., Bennett, J., Howe, A., Tokos, K., Bouck, N., Henglein, B., et al. (1996). A novel simian virus 40 early-region domain mediates transactivation of the cyclin a promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. Journal of Virology, 70(10), 6902–6908.

    PubMed  CAS  Google Scholar 

  28. Janssens, V., & Goris, J. (2001). Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochemistry Journal, 353(Pt 3), 417–439.

    Article  CAS  Google Scholar 

  29. Arino, J., Woon, C. W., Brautigan, D. L., Miller Jr., T. B., & Johnson, G. L. (1988). Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4252–4256.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen, P. (1989). The structure and regulation of protein phosphatases. Annual Reviews of Biochemistry, 58, 453–508.

    Article  CAS  Google Scholar 

  31. Gotz, J., Probst, A., Mistl, C., Nitsch, R. M., & Ehler, E. (2000). Distinct role of protein phosphatase 2A subunit calpha in the regulation of E-cadherin and beta-catenin during development. Mechanisms of Development, 93(1–2), 83–93.

    Article  PubMed  CAS  Google Scholar 

  32. Hemmings, B. A., Adams-Pearson, C., Maurer, F., Muller, P., Goris, J., Merlevede, W., et al. (1990). Alpha- and beta-forms of the 65-kda subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry, 29(13), 3166–3173.

    Article  PubMed  CAS  Google Scholar 

  33. Zhou, J., Pham, H. T., Ruediger, R., & Walter, G. (2003). Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: Differences in expression, subunit interaction, and evolution. Biochemical Journal, 369(Pt 2), 387–398.

    Article  PubMed  CAS  Google Scholar 

  34. Cho, U. S., & Xu, W. (2007). Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme. Nature, 445(7123), 53–57.

    Article  PubMed  CAS  Google Scholar 

  35. Xu, Y., Xing, Y., Chen, Y., Chao, Y., Lin, Z., Fan, E., et al. (2006). Structure of the protein phosphatase 2A holoenzyme. Cell, 127(6), 1239–1251.

    Article  PubMed  CAS  Google Scholar 

  36. Mayer, R. E., Hendrix, P., Cron, P., Matthies, R., Stone, S. R., Goris, J., et al. (1991). Structure of the 55-kda regulatory subunit of protein phosphatase 2A: Evidence for a neuronal-specific isoform. Biochemistry, 30(15), 3589–3597.

    Article  PubMed  CAS  Google Scholar 

  37. Strack, S., Chang, D., Zaucha, J. A., Colbran, R. J., & Wadzinski, B. E. (1999). Cloning and characterization of b delta, a novel regulatory subunit of protein phosphatase 2A. FEBS Letters, 460(3), 462–466.

    Article  PubMed  CAS  Google Scholar 

  38. Zolnierowicz, S., Csortos, C., Bondor, J., Verin, A., Mumby, M. C., & Depaoli-Roach, A. A. (1994). Diversity in the regulatory b-subunits of protein phosphatase 2A: Identification of a novel isoform highly expressed in brain. Biochemistry, 33(39), 11858–11867.

    Article  PubMed  CAS  Google Scholar 

  39. Csortos, C., Zolnierowicz, S., Bako, E., Durbin, S. D., & Depaoli-Roach, A. A. (1996). High complexity in the expression of the B′ subunit of protein phosphatase 2A. Evidence for the existence of at least seven novel isoforms. Journal of Biological Chemistry, 271(5), 2578–2588.

    Article  PubMed  CAS  Google Scholar 

  40. Mccright, B., & Virshup, D. M. (1995). Identification of a new family of protein phosphatase 2A regulatory subunits. Journal of Biological Chemistry, 270(44), 26123–26128.

    Article  PubMed  CAS  Google Scholar 

  41. Tehrani, M. A., Mumby, M. C., & Kamibayashi, C. (1996). Identification of a novel protein phosphatase 2A regulatory subunit highly expressed in muscle. Journal of Biological Chemistry, 271(9), 5164–5170.

    Article  PubMed  CAS  Google Scholar 

  42. Hendrix, P., Mayer-Jackel, R. E., Cron, P., Goris, J., Hofsteenge, J., Merlevede, W., et al. (1993). Structure and expression of a 72-kda regulatory subunit of protein phosphatase 2A. Evidence for different size forms produced by alternative splicing. Journal of Biological Chemistry, 268(20), 15267–15276.

    PubMed  CAS  Google Scholar 

  43. Seger, Y. R., Garcia-Cao, M., Piccinin, S., Cunsolo, C. L., Doglioni, C., Blasco, M. A., et al. (2002). Transformation of normal human cells in the absence of telomerase activation. Cancer Cells, 2(5), 401–413.

    Article  CAS  Google Scholar 

  44. Stevens, I., Janssens, V., Martens, E., Dilworth, S., Goris, J., & Van Hoof, C. (2003). Identification and characterization of B″-subunits of protein phosphatase 2A in Xenopus laevis oocytes and adult tissues. European Journal of Biochemistry, 270(2), 376–387.

    Article  PubMed  CAS  Google Scholar 

  45. Yan, Z., Fedorov, S. A., Mumby, M. C., & Williams, R. S. (2000). Pr48, a novel regulatory subunit of protein phosphatase 2A, interacts with cdc6 and modulates DNA replication in human cells. Molecular and Cellular Biology, 20(3), 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  46. Moreno, C. S., Ramachandran, S., Ashby, D. G., Laycock, N., Plattner, C. A., Chen, W., et al. (2004). Signaling and transcriptional changes critical for transformation of human cells by simian virus 40 small tumor antigen or protein phosphatase 2A B56gamma knockdown. Cancer Research, 64(19), 6978–6988.

    Article  PubMed  CAS  Google Scholar 

  47. Mccright, B., Brothman, A. R., & Virshup, D. M. (1996). Assignment of human protein phosphatase 2A regulatory subunit genes B56alpha, B56beta, B56gamma, B56delta, and B56epsilon (PPP2r5A–PPP2r5E), highly expressed in muscle and brain, to chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 → p12. Genomics, 36(1), 168–170.

    Article  PubMed  CAS  Google Scholar 

  48. Millward, T. A., Zolnierowicz, S., & Hemmings, B. A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends in Biochemical Sciences, 24(5), 186–191.

    Article  PubMed  CAS  Google Scholar 

  49. Kong, M., Fox, C. J., Mu, J., Solt, L., Xu, A., Cinalli, R. M., et al. (2004). The PP2A-associated protein alpha4 is an essential inhibitor of apoptosis. Science, 306(5696), 695–698.

    Article  PubMed  CAS  Google Scholar 

  50. Chao, Y., Xing, Y., Chen, Y., Xu, Y., Lin, Z., Li, Z., et al. (2006). Structure and mechanism of the phosphotyrosyl phosphatase activator. Molecular Cell, 23(4), 535–546.

    Article  PubMed  CAS  Google Scholar 

  51. Leulliot, N., Vicentini, G., Jordens, J., Quevillon-Cheruel, S., Schiltz, M., Barford, D., et al. (2006). Crystal structure of the PP2A phosphatase activator: Implications for its PP2A-specific PPiase activity. Molecular Cell, 23(3), 413–424.

    Article  PubMed  CAS  Google Scholar 

  52. Chen, Y., Xu, Y., Bao, Q., Xing, Y., Li, Z., Lin, Z., et al. (2007). Structural and biochemical insights into the regulation of protein phosphatase 2A by small t antigen of SV40. Nature Structural & Molecular Biology, 14(6), 527–534.

    Article  CAS  Google Scholar 

  53. Cho, U. S., Morrone, S., Sablina, A. A., Arroyo, J. D., Hahn, W. C., & Xu, W. (2007). Structural basis of PP2A inhibition by small t antigen. PLoS Biology, 5(8), e202.

    Article  PubMed  CAS  Google Scholar 

  54. Kamibayashi, C., Estes, R., Lickteig, R. L., Yang, S. I., Craft, C., & Mumby, M. C. (1994). Comparison of heterotrimeric protein phosphatase 2A containing different b subunits. Journal of Biological Chemistry, 269(31), 20139–20148.

    PubMed  CAS  Google Scholar 

  55. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., & Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cells, 5(2), 127–136.

    Article  CAS  Google Scholar 

  56. Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.

    Article  PubMed  CAS  Google Scholar 

  57. Sontag, E., Sontag, J. M., & Garcia, A. (1997). Protein phosphatase 2A is a critical regulator of protein kinase c zeta signaling targeted by SV40 small t to promote cell growth and nf-kappab activation. EMBO Journal, 16(18), 5662–5671.

    Article  PubMed  CAS  Google Scholar 

  58. Nunbhakdi-Craig, V., Craig, L., Machleidt, T., & Sontag, E. (2003). Simian virus 40 small tumor antigen induces deregulation of the actin cytoskeleton and tight junctions in kidney epithelial cells. Journal of Virology, 77(5), 2807–2818.

    Article  PubMed  CAS  Google Scholar 

  59. Howe, A. K., Gaillard, S., Bennett, J. S., & Rundell, K. (1998). Cell cycle progression in monkey cells expressing simian virus 40 small t antigen from adenovirus vectors. Journal of Virology, 72(12), 9637–9644.

    PubMed  CAS  Google Scholar 

  60. Dougherty, M. K., Muller, J., Ritt, D. A., Zhou, M., Zhou, X. Z., Copeland, T. D., et al. (2005). Regulation of raf-1 by direct feedback phosphorylation. Molecular Cell, 17(2), 215–224.

    Article  PubMed  CAS  Google Scholar 

  61. Frost, J. A., Alberts, A. S., Sontag, E., Guan, K., Mumby, M. C., & Feramisco, J. R. (1994). Simian virus 40 small t antigen cooperates with mitogen-activated kinases to stimulate ap-1 activity. Molecular and Cellular Biology, 14(9), 6244–6252.

    PubMed  CAS  Google Scholar 

  62. Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D., & Morrison, D. K. (2003). Protein phosphatase 2A positively regulates ras signaling by dephosphorylating ksr1 and raf-1 on critical 14-3-3 binding sites. Current Biology, 13(16), 1356–1364.

    Article  PubMed  CAS  Google Scholar 

  63. Alberts, A. S., Deng, T., Lin, A., Meinkoth, J. L., Schonthal, A., Mumby, M. C., et al. (1993). Protein phosphatase 2A potentates activity of promoters containing AP-1-binding elements. Molecular and Cellular Biology, 13(4), 2104–2112.

    PubMed  CAS  Google Scholar 

  64. Sears, R., Leone, G., Degregori, J., & Nevins, J. R. (1999). Ras enhances myc protein stability. Molecular Cell, 3(2), 169–179.

    Article  PubMed  CAS  Google Scholar 

  65. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., et al. (2004). A signalling pathway controlling c-myc degradation that impacts oncogenic transformation of human cells. Nature Cell Biology, 6(4), 308–318.

    Article  PubMed  CAS  Google Scholar 

  66. Arnold, H. K., & Sears, R. C. (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Molecular and Cellular Biology, 26(7), 2832–2844.

    Article  PubMed  CAS  Google Scholar 

  67. Garcia, A., Cereghini, S., & Sontag, E. (2000). Protein phosphatase 2A and phosphatidylinositol 3-kinase regulate the activity of SP1-responsive promoters. Journal of Biological Chemistry, 275(13), 9385–9389.

    Article  PubMed  CAS  Google Scholar 

  68. Skoczylas, C., Henglein, B., & Rundell, K. (2005). PP2A-dependent transactivation of the cyclin a promoter by SV40 st is mediated by a cell cycle-regulated E2F site. Virology, 332(2), 596–601.

    Article  PubMed  CAS  Google Scholar 

  69. Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I. W., Karnezis, A. N., et al. (1996). Induction of cyclin D1 by simian virus 40 small tumor antigen. Proceedings of the National Academy of Sciences of the United States of America, 93(23), 12861–12866.

    Article  PubMed  CAS  Google Scholar 

  70. Wheat, W. H., Roesler, W. J., & Klemm, D. J. (1994). Simian virus 40 small tumor antigen inhibits dephosphorylation of protein kinase a-phosphorylated CREB and regulates CREB transcriptional stimulation. Molecular and Cellular Biology, 14(9), 5881–5890.

    PubMed  CAS  Google Scholar 

  71. Didonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E., & Karin, M. (1997). A cytokine-responsive Ikappab kinase that activates the transcription factor NF-kappab. Nature, 388(6642), 548–554.

    Article  PubMed  CAS  Google Scholar 

  72. Zhao, J. J., Gjoerup, O. V., Subramanian, R. R., Cheng, Y., Chen, W., Roberts, T. M., et al. (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cells, 3(5), 483–495.

    Article  CAS  Google Scholar 

  73. Andjelkovic, M., Jakubowicz, T., Cron, P., Ming, X. F., Han, J. W., & Hemmings, B. A. (1996). Activation and phosphorylation of a pleckstrin homology domain containing protein kinase (rac-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proceedings of the Society for Experimental Biology and Medicine, 93(12), 5699–5704.

    CAS  Google Scholar 

  74. Yuan, H., Veldman, T., Rundell, K., & Schlegel, R. (2002). Simian virus 40 small tumor antigen activates akt and telomerase and induces anchorage-independent growth of human epithelial cells. Journal of Virology, 76(21), 10685–10691.

    Article  PubMed  CAS  Google Scholar 

  75. Ballou, L. M., Jiang, Y. P., Du, G., Frohman, M. A., & Lin, R. Z. (2003). Ca(2+)- and phospholipase D-dependent and -independent pathways activate mTOR signaling. FEBS Letters, 550(1–3), 51–56.

    Article  PubMed  CAS  Google Scholar 

  76. Westphal, R. S., Coffee Jr., R. L., Marotta, A., Pelech, S. L., & Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. Journal of Biological Chemistry, 274(2), 687–692.

    Article  PubMed  CAS  Google Scholar 

  77. Sontag, J. M., & Sontag, E. (2006). Regulation of cell adhesion by PP2A and SV40 small tumor antigen: An important link to cell transformation. Cellular and Molecular Life Science, 63(24), 2979–2991.

    Article  CAS  Google Scholar 

  78. Graessmann, A., Graessmann, M., Tjian, R., & Topp, W. C. (1980). Simian virus 40 small-t protein is required for loss of actin cable networks in rat cells. Journal of Virology, 33(3), 1182–1191.

    PubMed  CAS  Google Scholar 

  79. Suzuki, K., Chikamatsu, Y., & Takahashi, K. (2005). Requirement of protein phosphatase 2A for recruitment of IQGAP1 to rac-bound beta1 integrin. Journal of Cell Physiology, 203(3), 487–492.

    Article  CAS  Google Scholar 

  80. Colella, S., Ohgaki, H., Ruediger, R., Yang, F., Nakamura, M., Fujisawa, H., et al. (2001). Reduced expression of the Aalpha subunit of protein phosphatase 2A in human gliomas in the absence of mutations in the Aalpha and Abeta subunit genes. International Journal of Cancer, 93(6), 798–804.

    Article  CAS  Google Scholar 

  81. Suzuki, K., & Takahashi, K. (2003). Reduced expression of the regulatory a subunit of serine/threonine protein phosphatase 2A in human breast cancer MCF-7 cells. International Journal of Oncology, 23(5), 1263–1268.

    PubMed  CAS  Google Scholar 

  82. Chen, W., Arroyo, J. D., Timmons, J. C., Possemato, R., & Hahn, W. C. (2005). Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Research, 65(18), 8183–8192.

    Article  PubMed  CAS  Google Scholar 

  83. Sablina, A. A., Chen, W., Arroyo, J. D., Corral, L., Hector, M., Bulmer, S. E., et al. (2007). The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell, 129(5), 969–982.

    Article  PubMed  CAS  Google Scholar 

  84. Li, X., Scuderi, A., Letsou, A., & Virshup, D. M. (2002). B56-associated protein phosphatase 2A is required for survival and protects from apoptosis in drosophila melanogaster. Molecular and Cellular Biology, 22(11), 3674–3684.

    Article  PubMed  CAS  Google Scholar 

  85. Strack, S., Cribbs, J. T., & Gomez, L. (2004). Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. Journal of Biological Chemistry, 279(46), 47732–47739.

    Article  PubMed  CAS  Google Scholar 

  86. Francia, G., Mitchell, S. D., Moss, S. E., Hanby, A. M., Marshall, J. F., & Hart, I. R. (1996). Identification by differential display of annexin-vi, a gene differentially expressed during melanoma progression. Cancer Research, 56(17), 3855–3858.

    PubMed  CAS  Google Scholar 

  87. Deichmann, M., Polychronidis, M., Wacker, J., Thome, M., & Naher, H. (2001). The protein phosphatase 2A subunit B56gamma gene is identified to be differentially expressed in malignant melanomas by subtractive suppression hybridization. Melanoma Research, 11(6), 577–585.

    Article  PubMed  CAS  Google Scholar 

  88. Polakis, P. (2000). Wnt signaling and cancer. Genes and Development, 14(15), 1837–1851.

    PubMed  CAS  Google Scholar 

  89. Li, H. H., Cai, X., Shouse, G. P., Piluso, L. G., & Liu, X. (2007). A specific PP2A regulatory subunit, B56gamma, mediates DNA damage-induced dephosphorylation of p53 at Thr55. EMBO Journal, 26(2), 402–411.

    Article  PubMed  CAS  Google Scholar 

  90. Okamoto, K., Li, H., Jensen, M. R., Zhang, T., Taya, Y., Thorgeirsson, S. S., & Prives, C. (2002). Cyclin g recruits PP2A to dephosphorylate Mdm2. Molecular Cell, 9(4), 761–771.

    Article  PubMed  CAS  Google Scholar 

  91. Wei, W., Jobling, W. A., Chen, W., Hahn, W. C., & Sedivy, J. M. (2003). Abolition of cyclin-dependent kinase inhibitor p16ink4a and p21cip1/waf1 functions permits ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Molecular and Cellular Biology, 23(8), 2859–2870.

    Article  PubMed  CAS  Google Scholar 

  92. Camonis, J. H., & White, M. A. (2005). Ral GTPases: Corrupting the exocyst in cancer cells. Trends in Cell Biology, 15(6), 327–332.

    Article  PubMed  CAS  Google Scholar 

  93. Feig, L. A. (2003). Ral-GTPases: Approaching their 15 minutes of fame. Trends in Cell Biology, 13(8), 419–425.

    Article  PubMed  CAS  Google Scholar 

  94. Feinstein, E. (2005). Ral-GTPases: Good chances for a long-lasting fame. Oncogene, 24(3), 326–328.

    Article  PubMed  CAS  Google Scholar 

  95. Goi, T., Shipitsin, M., Lu, Z., Foster, D. A., Klinz, S. G., & Feig, L. A. (2000). An egf receptor/ral-GTPase signaling cascade regulates c-src activity and substrate specificity. EMBO Journal, 19(4), 623–630.

    Article  PubMed  CAS  Google Scholar 

  96. Jiang, H., Luo, J. Q., Urano, T., Frankel, P., Lu, Z., Foster, D. A., & Feig, L. A. (1995). Involvement of ral GTPase in v-src-induced phospholipase D activation. Nature, 378(6555), 409–412.

    Article  PubMed  CAS  Google Scholar 

  97. Moskalenko, S., Henry, D. O., Rosse, C., Mirey, G., Camonis, J. H., & White, M. A. (2002). The exocyst is a ral effector complex. Nature Cell Biology, 4(1), 66–72.

    Article  PubMed  CAS  Google Scholar 

  98. Adler, H. T., Nallaseth, F. S., Walter, G., & Tkachuk, D. C. (1997). Hrx leukemic fusion proteins form a heterocomplex with the leukemia-associated protein SET and protein phosphatase 2A. Journal of Biological Chemistry, 272(45), 28407–28414.

    Article  PubMed  CAS  Google Scholar 

  99. Gildea, J. J., Harding, M. A., Seraj, M. J., Gulding, K. M., & Theodorescu, D. (2002). The role of RalA in epidermal growth factor receptor-regulated cell motility. Cancer Research, 62(4), 982–985.

    PubMed  CAS  Google Scholar 

  100. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H., & Stossel, T. P. (1999). The small GTPase RalA targets filamin to induce filopodia. Proceedings of the Society for Experimental Biology and Medicine, 96(5), 2122–2128.

    CAS  Google Scholar 

  101. Tchevkina, E., Agapova, L., Dyakova, N., Martinjuk, A., Komelkov, A., & Tatosyan, A. (2005). The small G-protein RalA stimulates metastasis of transformed cells. Oncogene, 24(3), 329–335.

    Article  PubMed  CAS  Google Scholar 

  102. Chien, Y., & White, M. A. (2003). Ral GTPases are linchpin modulators of human tumor-cell proliferation and survival. EMBO Reports, 4(8), 800–806.

    Article  PubMed  CAS  Google Scholar 

  103. Lim, K. H., Baines, A. T., Fiordalisi, J. J., Shipitsin, M., Feig, L. A., Cox, A. D., et al. (2005). Activation of RalA is critical for ras-induced tumorigenesis of human cells. Cancer Cells, 7(6), 533–545.

    Article  CAS  Google Scholar 

  104. Panner, A., Nakamura, J. L., Parsa, A. T., Rodriguez-Viciana, P., Berger, M. S., Stokoe, D., et al. (2006). mTOR-independent translational control of the extrinsic cell death pathway by RalA. Molecular and Cellular Biology, 26(20), 7345–7357.

    Article  PubMed  CAS  Google Scholar 

  105. Li, M., Makkinje, A., & Damuni, Z. (1996). The myeloid leukemia-associated protein set is a potent inhibitor of protein phosphatase 2A. Journal of Biological Chemistry, 271(19), 11059–11062.

    Article  PubMed  CAS  Google Scholar 

  106. Seo, S. B., Mcnamara, P., Heo, S., Turner, A., Lane, W. S., & Chakravarti, D. (2001). Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the SET oncoprotein. Cell, 104(1), 119–130.

    Article  PubMed  CAS  Google Scholar 

  107. Canela, N., Rodriguez-Vilarrupla, A., Estanyol, J. M., Diaz, C., Pujol, M. J., Agell, N., et al. (2003). The set protein regulates G2/M transition by modulating cyclin B-cyclin-dependent kinase 1 activity. Journal of Biological Chemistry, 278(2), 1158–1164.

    Article  PubMed  CAS  Google Scholar 

  108. Kumar, R. N., Radhakrishnan, R., Ha, J. H., & Dhanasekaran, N. (2004). Proteome analysis of NIH3T3 cells transformed by activated Galpha12: Regulation of leukemia-associated protein set. Journal of Proteome Research, 3(6), 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  109. Carlson, S. G., Eng, E., Kim, E. G., Perlman, E. J., Copeland, T. D., & Ballermann, B. J. (1998). Expression of set, an inhibitor of protein phosphatase 2A, in renal development and Wilms’ tumor. Journal of the American Society of Nephrology, 9(10), 1873–1880.

    PubMed  CAS  Google Scholar 

  110. Fornerod, M., Boer, J., Van Baal, S., Jaegle, M., Von Lindern, M., Murti, K. G., et al. (1995). Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene, 10(9), 1739–1748.

    PubMed  CAS  Google Scholar 

  111. Von Lindern, M., Van Baal, S., Wiegant, J., Raap, A., Hagemeijer, A., & Grosveld, G. (1992). Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: Characterization of the set gene. Molecular and Cellular Biology, 12(8), 3346–3355.

    Google Scholar 

  112. Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., & Lieberman, J. (2003). Tumor suppressor NM23-H1 is a granzyme A-activated DNAase during CTL-mediated apoptosis, and the nucleosome assembly protein set is its inhibitor. Cell, 112(5), 659–672.

    Article  PubMed  CAS  Google Scholar 

  113. Junttila, M. R., Puustinen, P., Niemela, M., Ahola, R., Arnold, H., Bottzauw, T., et al. (2007). CIP2A inhibits PP2A in human malignancies. Cell, 130(1), 51–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Hahn laboratory for the helpful discussions. This work was supported in part by a grant from the U.S. National Cancer Institute P01 CA50661 (WCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sablina, A.A., Hahn, W.C. SV40 small T antigen and PP2A phosphatase in cell transformation. Cancer Metastasis Rev 27, 137–146 (2008). https://doi.org/10.1007/s10555-008-9116-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9116-0

Keywords

Navigation