Skip to main content
Log in

Clinical applications of multiparametric CMR in left ventricular hypertrophy

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

There are a number of diseases which can increase left ventricular myocardial wall thickness through a number of different mechanisms. Multi-parametric mapping techniques are a new addition to the cardiovascular magnetic resonance (CMR) armoury with a number of potential clinical roles. In this review article, we will explore the role of imaging in left ventricular hypertrophy, and particularly developments in CMR. We focus on ability of CMR to characterize myocardial tissue using multiparametric mapping (native T1, T2 and extracellular volume mapping), to bridge from the microscopic histological domain and into the clinical domain of non-invasive imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced with permission from Fontana et al. [39])

Similar content being viewed by others

References

  1. Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102:470–479

    Article  CAS  PubMed  Google Scholar 

  2. Authors/Task Force members, Elliott PM, Anastatasakis A, et al (2014) ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 35(39):2733–2779

    Article  Google Scholar 

  3. Gupta S, Berry JD, Ayers CR et al (2010) Left ventricular hypertrophy, aortic wall thickness, and lifetime predicted risk of cardiovascular disease: the Dallas Heart Study. JACC Cardiovasc Imaging 3(6):605–613

    Article  PubMed  Google Scholar 

  4. Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    Article  CAS  PubMed  Google Scholar 

  5. Bellenger NG, Davies LC, Francis JM et al (2000) Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2(4):271–278

    Article  CAS  PubMed  Google Scholar 

  6. Klein C, Nekolla SG, Balbach T et al (2004) The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 20(4):588–593

    Article  PubMed  Google Scholar 

  7. Maestrini V, Treibel TA, White SK et al (2014) T1 Mapping for characterization of intracellular and extracellular myocardial diseases in heart failure. Curr Cardiovasc Imaging Rep 7(9): 9287

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moon JC, Messroghli DR, Kellman P et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bos JM, Towbin JA, Ackerman MJ (2009) Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol 54:201–211

    Article  CAS  PubMed  Google Scholar 

  10. Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816

    Article  PubMed  Google Scholar 

  11. Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320

    PubMed  Google Scholar 

  12. Towbin JA (2009) Hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 32(Suppl 2):23–31

    Article  Google Scholar 

  13. Steriotis AK, Sharma S (2015) Risk stratification in hypertrophic cardiomyopathy. Eur Cardiol Rev 10(1):31–36

    Article  Google Scholar 

  14. Moon JC, Reed E, Sheppard MN et al (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43:2260–2264

    Article  PubMed  Google Scholar 

  15. Moon JC, McKenna WJ, McCrohon JA et al (2003) Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    Article  PubMed  Google Scholar 

  16. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, Webb J, Kulkarni M, Dawson D, Sulaibeekh L (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874

    Article  PubMed  Google Scholar 

  17. Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887

    Article  PubMed  Google Scholar 

  18. Green JJ, Berger JS, Kramer CM et al (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 5:370–377

    Article  PubMed  Google Scholar 

  19. Lyons KS, Dixon LJ, Johnston N et al (2014) Late gadolinium enhancement is common in patients with hypertrophic cardiomyopathy and no clinical risk factors for sudden cardiac death: a single center experience. Cardiol J 21:29–32

    Article  PubMed  Google Scholar 

  20. Ismail TF, Jabbour A, Gulati A et al (2014) Role of late gadolinium enhancement cardiovascular magnetic resonance in the risk stratification of hypertrophic cardiomyopathy. Heart 100:1851–1858

    Article  PubMed  Google Scholar 

  21. Choudhury L, Mahrholdt H, Wagner A et al (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164

    Article  PubMed  Google Scholar 

  22. Hansen MW, Merchant N (2007) MRI of hypertrophic cardiomyopathy: part I, MRI appearances. AJR Am J Roentgenol 189:1313–1335

    Google Scholar 

  23. Noureldin RA, Liu S, Nacif MS et al (2012) The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 20(14):17

    Article  Google Scholar 

  24. Maron MS, Appelbaum E, Harrigan CJ et al (2008) Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Failure 1(3):184–191

    Article  PubMed  Google Scholar 

  25. Adabag AS, Maron BJ, Appelbaum E et al (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51:1369–1374

    Article  PubMed  Google Scholar 

  26. Rubinshtein R, Glockner JF, Ommen SR et al (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Failure 3(1):51–58

    Article  PubMed  Google Scholar 

  27. Chan RH, Maron BJ, Olivotto I et al (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130:484–495

    Article  PubMed  Google Scholar 

  28. McKenna WJ, Nagueh SF (2014) Cardiac magnetic resonance imaging and sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130:455–457

    Article  PubMed  Google Scholar 

  29. Dass S, Suttie JJ, Piechnik SK et al (2012) Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5(6):726–733

    Article  PubMed  Google Scholar 

  30. Puntmann VO, Jahnke C, Gebker R et al (2010) Usefulness of magnetic resonance imaging to distinguish hypertensive and hypertrophic cardiomyopathy. Am J Cardiol 106(7):1016–1022

    Article  PubMed  Google Scholar 

  31. Sado DM, Flett AS, Banypersad SM et al (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98(19):1436–1441

    Article  PubMed  Google Scholar 

  32. Ho CY, Abbasi SA, Neilan TG et al (2013) T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging 6:415–422

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kellman P, Wilson JR, Xue H et al (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rapezzi C, Merlini G, Quarta CC et al (2009) Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 120(13):1203–1212

    Article  CAS  PubMed  Google Scholar 

  35. Wechalekar AD, Gillmore JD, Hawkins PN (2016) Systemic amyloidosis. Lancet 387(10038):2641–2654

  36. Fontana M, Chung R, Hawkins PN et al (2015) Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev 20(2):133–144

    Article  CAS  PubMed  Google Scholar 

  37. Fontana M, Banypersad SM, Treibel TA et al (2014) Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 7(2):157–165

    Article  PubMed  Google Scholar 

  38. Yamashita T, Asl KH, Yazaki M et al (2005) A prospective evaluation of the transthyretin Ile122 allele frequency in an African-American population. Amyloid 12:127–130

    Article  CAS  PubMed  Google Scholar 

  39. Fontana M, Pica S, Reant P et al (2015) Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132:1570–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mongeon FP, Jerosch-Herold M, Coelho-Filho OR et al (2012) Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging 5:897–907

    Article  PubMed  PubMed Central  Google Scholar 

  41. Barison A, Aquaro GD, Pugliese NR et al (2015) Measurement of myocardial amyloid deposition in systemic amyloidosis: insights from cardiovascular magnetic resonance imaging. J Intern Med 277:605–614

    Article  CAS  PubMed  Google Scholar 

  42. Fontana M, Banypersad S, Treibel TA et al (2014) AL and ATTR cardiac amyloid are different: native T1 mapping and ECV detect different biology. J Cardiovasc Magn Reson 16(Suppl 1):P341

    Article  PubMed Central  Google Scholar 

  43. Fontana M, Banypersad SM, Treibel TA et al (2015) Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology 277(2):388–397 [published online ahead of print May 21, 2015]

    Article  PubMed  Google Scholar 

  44. Richards DB, Cookson LM, Berges AC et al (2015) Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med 373(12):1106–1114

    Article  CAS  PubMed  Google Scholar 

  45. Patel MR, Cecchi F, Cizmarik M et al (2011) Cardiovascular events in patients with fabry disease natural history data from the fabry registry. J Am Coll Cardiol 57(9):1093–1099

    Article  PubMed  Google Scholar 

  46. Weidemann F, Niemann M, Breunig F et al (2009) Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 119:524–529

    Article  CAS  PubMed  Google Scholar 

  47. Moon JC, Sheppard M, Reed E et al (2006) The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson 8:479–482

    Article  PubMed  Google Scholar 

  48. Moon JC, Sachdev B, Elkington AG et al (2003) Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 24(23):2151–2155

    Article  PubMed  Google Scholar 

  49. Niemann M, Herrmann S, Hu K et al (2011) Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging 4:592–601

    Article  PubMed  Google Scholar 

  50. Kramer J, Niemann M, Stork S et al (2014) Relation of burden of myocardial fibrosis to malignant ventricular arrhythmias and outcomes in Fabry disease. Am J Cardiol 114:895–900

    Article  PubMed  Google Scholar 

  51. Sado DM, White SK, Piechnik SK et al (2013) Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6(3):392–398

    Article  PubMed  Google Scholar 

  52. Thompson RB, Chow K, Khan A et al (2013) T1 mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 6(5):637–645

    Article  PubMed  Google Scholar 

  53. Pica S, Sado DM, Maestrini V et al (2014) Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16:99

    Article  PubMed  PubMed Central  Google Scholar 

  54. Levy D, Garrison R, Savage D et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    Article  CAS  PubMed  Google Scholar 

  55. Lewington S, Clarke R, Qizilbash N et al (2002) Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360:1903–1913

    Article  PubMed  Google Scholar 

  56. Rudolph A, Abdel-Aty H, Bohl S et al (2009) Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol 53:284–291

    Article  PubMed  Google Scholar 

  57. Andersen K, Hennersdorf M, Cohnen M, Blondin D, Mödder U, Poll LW (2009) Myocardial delayed contrast enhancement in patients with arterial hypertension: initial results of cardiac MRI. Eur J Radiol 71:75–81

    Article  PubMed  Google Scholar 

  58. Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138–144

    Article  PubMed  Google Scholar 

  59. Kehr E, Sono M, Chugh SS et al (2008) Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imaging 24:61–68

    Article  PubMed  Google Scholar 

  60. Miller CA, Naish JH, Bishop P et al (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6:373–383

    Article  PubMed  Google Scholar 

  61. Bull S, White SK, Piechnik SK et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99(13):932–937

    Article  PubMed  PubMed Central  Google Scholar 

  62. Treibel TA, Zemrak F, Sado DM et al (2015) Extracellular volume quantification in isolated hypertension—changes at the detectable limits? J Cardiovasc Magn Reson 17(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kuruvilla S, Janardhanan R, Antkowiak P et al (2015) Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging 8(2):172–180

    Article  PubMed  PubMed Central  Google Scholar 

  64. Treibel TA, Fontana M, Reant P et al (2015) T1 mapping in severe aortic stenosis: insights into LV remodelling. J Cardiovasc Magn Reson 17(Suppl 1):O89

    Article  PubMed Central  Google Scholar 

  65. Dweck MR, Joshi S, Murigu T et al (2011) Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 58:1271–1279

    Article  PubMed  Google Scholar 

  66. Weidemann F, Herrmann S, Störk S et al (2009) Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 120:577–584

    Article  CAS  PubMed  Google Scholar 

  67. Barone-Rochette G, Piérard S, De Meester et al (2014) Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 64:144–154

    Article  PubMed  Google Scholar 

  68. Chin CW, Messika-Zeitoun D, Shah AS et al (2016) A clinical risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis. Eur Heart J 37(8):713–723

    Article  PubMed  Google Scholar 

  69. Chin CW, Shah AS, McAllister DA et al (2014) High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur Heart J 35:2312–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shah AS, Chin CW, Vassiliou V et al (2014) Left ventricular hypertrophy with strain and aortic stenosis. Circulation 130:1607–1616

    Article  PubMed  Google Scholar 

  71. Bull S, White SK, Piechnik SK et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937

    Article  PubMed  PubMed Central  Google Scholar 

  72. Flett AS, Sado DM, Quarta G et al (2012) Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 13:819–826

    Article  PubMed  Google Scholar 

  73. Treibel TA, Fontana M, Kozor R et al (2016) Diffuse myocardial fibrosis- a therapeutic target? Proof of regression at 1-year following aortic valve replacement: the RELIEF-AS study. J Cardiovasc Magn Reson 18(Suppl 1):037

    Article  Google Scholar 

  74. McDiarmid AK, Swoboda PP, Erhayiem B et al (2016) Athletic cardiac adaptation in males is a consequence of elevated myocyte mass. Circ Cardiovasc Imaging 9(4):e003579

    PubMed  PubMed Central  Google Scholar 

  75. Swoboda PP, McDiarmid AK, Erhayiem B et al (2016) Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from athlete’s heart. J Am Coll Cardiol 67(18):2189–2190

    Article  PubMed  Google Scholar 

  76. Sado DM, Flett AS, Moon JC (2011) Novel imaging techniques for diffuse myocardial fibrosis. Future Cardiol 7(5):643–650

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Sado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordin, S., Dancy, L., Moon, J.C. et al. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Int J Cardiovasc Imaging 34, 577–585 (2018). https://doi.org/10.1007/s10554-018-1320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1320-6

Keywords

Navigation