Skip to main content

Advertisement

Log in

Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

To translate promising preclinical data on the combination of vorinostat and ixabepilone for metastatic breast cancer (MBC) into clinical trials.

Methods

We conducted a randomized two-arm Phase IB clinical trial of ascending doses of vorinostat and ixabepilone in prior -treated MBC patients. To determine the maximum tolerated dose (MTD), 37 patients were randomized to schedule A: every-3-week ixabepilone + vorinostat (days 1–14), or schedule B: weekly ixabepilone + vorinostat (days 1–7; 15–21) Pharmacokinetics were assessed. Nineteen additional patients were randomized to schedule A or B and objective response rate (ORR), clinical benefit rate (CBR), toxicity, progression-free survival (PFS), and overall survival (OS) were assessed.

Results

The schedule A MTD was vorinostat 300 mg daily (days 1–14), ixabepilone 32 mg/m2 (day 2); 21-day cycle 27% dose-limiting toxicities (DLTs). The schedule B MTD was vorinostat 300 mg daily (days 1–7; 15–21), ixabepilone 16 mg/m2 (days 2, 9, 16); 28-day cycle; no DLTs. Vorinostat and ixabepilone clearances were 194 L/h and 21.3 L/h/m2, respectively. Grade 3 peripheral sensory neuropathy was reported in 8% (A) and 21% (B) of patients. The ORR and CBR were 22 and 22% (A); 30 and 35% (B). Median PFS was 3.9 (A) and 3.7 (B) months. OS was 14.8 (A) and 17.1 (B) months.

Conclusions

We established the MTD of vorinostat and ixabepilone. This drug combination offers a novel therapy for previously treated MBC patients. The potential for lower toxicity and comparable efficacy compared to current therapies warrants further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T, Cooper D, Gansler T, Lerro C, Fedewa S, Lin C, Leach C, Cannady RS, Cho H, Scoppa S, Hachey M, Kirch R, Jemal A, Ward E (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62(4):220–241. doi:10.3322/caac.21149

    Article  PubMed  Google Scholar 

  2. Andreopoulou E, Sparano JA (2013) Chemotherapy in patients with anthracycline- and taxane-pretreated metastatic breast cancer: an overview. Curr Breast Cancer Rep 5(1):42–50. doi:10.1007/s12609-012-0097-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Colozza M, de Azambuja E, Personeni N, Lebrun F, Piccart MJ, Cardoso F (2007) Achievements in systemic therapies in the pregenomic era in metastatic breast cancer. Oncologist 12(3):253–270. doi:10.1634/theoncologist.12-3-253

    Article  CAS  PubMed  Google Scholar 

  4. Jones SE, Erban J, Overmoyer B, Budd GT, Hutchins L, Lower E, Laufman L, Sundaram S, Urba WJ, Pritchard KI, Mennel R, Richards D, Olsen S, Meyers ML, Ravdin PM (2005) Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol 23(24):5542–5551. doi:10.1200/JCO.2005.02.027

    Article  CAS  PubMed  Google Scholar 

  5. Sledge GW, Neuberg D, Bernardo P, Ingle JN, Martino S, Rowinsky EK, Wood WC (2003) Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: an intergroup trial (E1193). J Clin Oncol 21(4):588–592. doi:10.1200/JCO.2003.08.013

    Article  PubMed  Google Scholar 

  6. Paridaens R, Biganzoli L, Bruning P, Klijn JG, Gamucci T, Houston S, Coleman R, Schachter J, Van Vreckem A, Sylvester R, Awada A, Wildiers J, Piccart M (2000) Paclitaxel versus doxorubicin as first-line single-agent chemotherapy for metastatic breast cancer: a European Organization for Research and Treatment of Cancer Randomized Study with cross-over. J Clin Oncol 18(4):724–733. doi:10.1200/JCO.2000.18.4.724

    Article  CAS  PubMed  Google Scholar 

  7. Lee FY, Borzilleri R, Fairchild CR, Kamath A, Smykla R, Kramer R, Vite G (2008) Preclinical discovery of ixabepilone, a highly active antineoplastic agent. Cancer Chemother Pharmacol 63(1):157–166. doi:10.1007/s00280-008-0724-8

    Article  CAS  PubMed  Google Scholar 

  8. Yardley DA (2008) Activity of ixabepilone in patients with metastatic breast cancer with primary resistance to taxanes. Clin Breast Cancer 8(6):487–492. doi:10.3816/CBC.2008.n.058

    Article  CAS  PubMed  Google Scholar 

  9. Thomas E, Tabernero J, Fornier M, Conte P, Fumoleau P, Lluch A, Vahdat LT, Bunnell CA, Burris HA, Viens P, Baselga J, Rivera E, Guarneri V, Poulart V, Klimovsky J, Lebwohl D, Martin M (2007) Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in patients with taxane-resistant metastatic breast cancer. J Clin Oncol 25(23):3399–3406. doi:10.1200/JCO.2006.08.9102

    Article  CAS  PubMed  Google Scholar 

  10. Thomas ES, Gomez HL, Li RK, Chung HC, Fein LE, Chan VF, Jassem J, Pivot XB, Klimovsky JV, de Mendoza FH, Xu B, Campone M, Lerzo GL, Peck RA, Mukhopadhyay P, Vahdat LT, Roche HH (2007) Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 25(33):5210–5217. doi:10.1200/JCO.2007.12.6557

    Article  CAS  PubMed  Google Scholar 

  11. Thomas ES (2008) Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 26(13):2223. doi:10.1200/JCO.2008.16.5019

    Article  PubMed  Google Scholar 

  12. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428. doi:10.1038/nrg816

    CAS  PubMed  Google Scholar 

  13. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51. doi:10.1038/nrc1779

    Article  CAS  PubMed  Google Scholar 

  14. Paris M, Porcelloni M, Binaschi M, Fattori D (2008) Histone deacetylase inhibitors: from bench to clinic. J Med Chem 51(6):1505–1529. doi:10.1021/jm7011408

    Article  CAS  PubMed  Google Scholar 

  15. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK (2001) Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1(3):194–202. doi:10.1038/35106079

    Article  CAS  PubMed  Google Scholar 

  16. Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, Wang HG, Atadja P, Bhalla K (2003) Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2(10):971–984

    CAS  PubMed  Google Scholar 

  17. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Can Res 61(23):8492–8497

    CAS  Google Scholar 

  18. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193. doi:10.1038/43710

    Article  CAS  PubMed  Google Scholar 

  19. Kim MS, Blake M, Baek JH, Kohlhagen G, Pommier Y, Carrier F (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Can Res 63(21):7291–7300

    CAS  Google Scholar 

  20. Rikiishi H, Shinohara F, Sato T, Sato Y, Suzuki M, Echigo S (2007) Chemosensitization of oral squamous cell carcinoma cells to cisplatin by histone deacetylase inhibitor, suberoylanilide hydroxamic acid. Int J Oncol 30(5):1181–1188

    CAS  PubMed  Google Scholar 

  21. Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN (2004) Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92(2):223–237. doi:10.1002/jcb.20045

    Article  CAS  PubMed  Google Scholar 

  22. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Wong C, Aparicio A, Gandara DR, Somlo G (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 14(21):7138–7142. doi:10.1158/1078-0432.CCR-08-0122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji Y, Liu P, Li Y, Bekele BN (2010) A modified toxicity probability interval method for dose-finding trials. Clin Trials 7(6):653–663. doi:10.1177/1740774510382799

    Article  PubMed  PubMed Central  Google Scholar 

  24. Perez EA, Lerzo G, Pivot X, Thomas E, Vahdat L, Bosserman L, Viens P, Cai C, Mullaney B, Peck R, Hortobagyi GN (2007) Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J Clin Oncol 25(23):3407–3414. doi:10.1200/JCO.2006.09.3849

    Article  CAS  PubMed  Google Scholar 

  25. Sparano JA, Vrdoljak E, Rixe O, Xu B, Manikhas A, Medina C, Da Costa SC, Ro J, Rubio G, Rondinon M, Perez Manga G, Peck R, Poulart V, Conte P (2010) Randomized phase III trial of ixabepilone plus capecitabine versus capecitabine in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 28(20):3256–3263. doi:10.1200/JCO.2009.24.4244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kelly WK, O’Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, MacGregore-Cortelli B, Tong W, Secrist JP, Schwartz L, Richardson S, Chu E, Olgac S, Marks PA, Scher H, Richon VM (2005) Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23(17):3923–3931. doi:10.1200/JCO.2005.14.167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, Beals B, Figg WD, Hawkins M, Desai N (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res 11(11):4136–4143. doi:10.1158/1078-0432.CCR-04-2291

    Article  CAS  PubMed  Google Scholar 

  28. Rischin D, Webster LK, Millward MJ, Linahan BM, Toner GC, Woollett AM, Morton CG, Bishop JF (1996) Cremophor pharmacokinetics in patients receiving 3-, 6-, and 24-hour infusions of paclitaxel. J Natl Cancer Inst 88(18):1297–1301

    Article  CAS  PubMed  Google Scholar 

  29. Aghajanian C, Burris HA 3rd, Jones S, Spriggs DR, Cohen MB, Peck R, Sabbatini P, Hensley ML, Greco FA, Dupont J, O’Connor OA (2007) Phase I study of the novel epothilone analog ixabepilone (BMS-247550) in patients with advanced solid tumors and lymphomas. J Clin Oncol 25(9):1082–1088. doi:10.1200/JCO.2006.08.7304

    Article  CAS  PubMed  Google Scholar 

  30. Cohen M, Mould D, Roy A, Mandava M, Pfister M (2008) A population pharmacokinetic analysis of ixabepilone in patients with cancer. J Clin Oncol 15S:2521 2008 ASCO Annual Meeting Proceedings

    Article  Google Scholar 

  31. U.S. Department of Health and Human Services Food and Drug Administration (2007) Ixabepilone clinical pharmacology and biopharmaceutics review. U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research

  32. Beumer JH, Chu E, Salamone SJ (2012) Body-surface area-based chemotherapy dosing: appropriate in the 21st century? J Clin Oncol 30(31):3896–3897. doi:10.1200/JCO.2012.44.2863

    Article  PubMed  Google Scholar 

  33. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55

    Article  CAS  Google Scholar 

  34. Chen LH, Sun YT, Chen YF, Lee MY, Chang LY, Chang JY, Shen MR (2015) Integrating image-based high-content screening with mouse models identifies 5-hydroxydecanoate as a neuroprotective drug for paclitaxel-induced neuropathy. Mol Cancer Ther 14(10):2206–2214. doi:10.1158/1535-7163.MCT-15-0268

    Article  CAS  PubMed  Google Scholar 

  35. Parise RA, Holleran JL, Beumer JH, Ramalingam S, Egorin MJ (2006) A liquid chromatography-electrospray ionization tandem mass spectrometric assay for quantitation of the histone deacetylase inhibitor, vorinostat (suberoylanilide hydroxamicacid, SAHA), and its metabolites in human serum. J Chromatogr, B 840(2):108–115. doi:10.1016/j.jchromb.2006.04.044

    Article  CAS  Google Scholar 

  36. Xu XS, Zeng J, Mylott W, Arnold M, Waltrip J, Iacono L, Mariannino T, Stouffer B (2010) Liquid chromatography and tandem mass spectrometry for the quantitative determination of ixabepilone (BMS-247550, Ixempra) in human plasma: method validation, overcoming curve splitting issues and eliminating chromatographic interferences from degradants. J Chromatogr B 878(5–6):525–537. doi:10.1016/j.jchromb.2009.12.014

    Article  CAS  Google Scholar 

  37. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098. doi:10.1056/NEJM198710223171717

    CAS  PubMed  Google Scholar 

  38. D’Argenio DZ (1981) Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm 9(6):739–756

    Article  PubMed  Google Scholar 

  39. D’Argenio DZA, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

Download references

Acknowledgements

The authors thank all participating patients and their families, as well as the network of investigators, research nurses, study coordinators, and operational staff. The authors also thank Nicola Solomon, PhD for assistance in editing the manuscript. This study was supported by Merck and Bristol-Myers Squibb. This project used the UPCI Cancer Pharmacokinetics and Pharmacodynamics Facility (CPPF) and was supported in part by National Institutes of Health award P30CA047904. This study was previously reported at the San Antonio Breast Cancer Symposium 2012; J Clin Oncol 30, 2012 (suppl; abstr 1070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thehang Luu or Jan H. Beumer.

Ethics declarations

Conflict of interest

JHB received funding from Bristol-Myers Squibb to perform PK analyses. AH has consulted for Pierian Biosciences and Boehringer Ingelheim and received funding from Celgen, Novartis, and GSK. GS has consulted for Genentech, Novartis, AstraZeneca, AbbVie, Pfizer, Nanostring, Celgene, and PUMA, and received funding from Celgene and Genentech.

Ethical approval

Experiments comply with the current laws of the USA. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luu, T., Kim, Kp., Blanchard, S. et al. Phase IB trial of ixabepilone and vorinostat in metastatic breast cancer. Breast Cancer Res Treat 167, 469–478 (2018). https://doi.org/10.1007/s10549-017-4516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4516-x

Keywords

Navigation