Skip to main content

Advertisement

Log in

TCH-1030 targeting on topoisomerase I induces S-phase arrest, DNA fragmentation, and cell death of breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Camptothecin (CPT) and its derivatives are powerful anticancer agents, but these compounds are chemically unstable due to their α-hydroxy lactone six-membered E-ring structure, which is essential for trapping topoisomerase I (topo I)-DNA cleavage complexes. Moreover, the reversibility of trapping the topo I-DNA cleavage complex and the tight binding of CPTs to human serum albumin limit the levels of available active drug. CPT analogs are the only clinically available drugs that target topo I. Owing to the clinical importance of CPT analogs, the development of new anticancer agents which inhibit topo I is urgently needed. In the present study, we report the synthesis, biologic evaluation, and molecular mechanism of a series of substituted indeno[1,2-c]quinoline derivatives against the growth of several human cancer cell lines. We found that 9-methoxy-6-(piperazin-1-yl)-11H-indeno[1,2-c]quinoline-11-one O-3-(dimethylamino)propyl oxime (TCH-1030) intercalated into DNA and preferentially inhibited DNA topo I relaxation. Flow cytometric analysis and BrdU incorporation assays indicate that TCH-1030 alters cell cycle progression, induces S-phase arrest, and causes DNA polyploidy (>4 N) that is distinct from the typical G2-M arrest reported with known topoisomerase toxins. Our data indicate that TCH-1030 induces caspase 3 activation, PARP cleavage, γ-H2AX phosphorylation, and, consequently, DNA fragmentation and apoptosis. We also demonstrated that treatment with TCH-1030 significantly inhibits tumor growth in a BT483-xenograft nude mouse model. Taken together, we conclude that the primary mechanism of action of TCH-1030-induced cell cycle retardation and apoptosis-mediated DNA damage involves DNA binding and intercalation as well as topo I inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang JC (1996) DNA topoisomerases. Annu Rev Biochem 65:635–692

    Article  PubMed  CAS  Google Scholar 

  2. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430–440

    Article  PubMed  CAS  Google Scholar 

  3. Nitiss JL (1998) Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim Biophys Acta 1400:63–81

    Article  PubMed  CAS  Google Scholar 

  4. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413

    Article  PubMed  CAS  Google Scholar 

  5. Staker BL, Feese MD, Cushman M, Pommier Y, Zembower D, Stewart L, Burgin AB (2005) Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 48:2336–2345

    Article  PubMed  CAS  Google Scholar 

  6. Boege F, Straub T, Kehr A, Boesenberg C, Christiansen K, Andersen A, Jakob F, Kohrle J (1996) Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J Biol Chem 271:2262–2270

    Article  PubMed  CAS  Google Scholar 

  7. Fortune JM, Osheroff N (1998) Merbarone inhibits the catalytic activity of human topoisomerase IIalpha by blocking DNA cleavage. J Biol Chem 273:17643–17650

    Article  PubMed  CAS  Google Scholar 

  8. Bridewell DJ, Finlay GJ, Baguley BC (1997) Differential actions of aclarubicin and doxorubicin: the role of topoisomerase I. Oncol Res 9:535–542

    PubMed  CAS  Google Scholar 

  9. Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6:789–802

    Article  PubMed  CAS  Google Scholar 

  10. Pommier Y (1996) Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins. Semin Oncol 23:3–10

    PubMed  CAS  Google Scholar 

  11. Covey JM, Jaxel C, Kohn KW, Pommier Y (1989) Protein-linked DNA strand breaks induced in mammalian cells by camptothecin, an inhibitor of topoisomerase I. Cancer Res 49:5016–5022

    PubMed  CAS  Google Scholar 

  12. Burke TG, Mi Z (1994) The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 37:40–46

    Article  PubMed  CAS  Google Scholar 

  13. Antony S, Kohlhagen G, Agama K, Jayaraman M, Cao S, Durrani FA, Rustum YM, Cushman M, Pommier Y (2005) Cellular topoisomerase I inhibition and antiproliferative activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I poison. Mol Pharmacol 67:523–530

    Article  PubMed  CAS  Google Scholar 

  14. Tseng CH, Chen YL, Lu PJ, Yang CN, Tzeng CC (2008) Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorg Med Chem 16:3153–3162

    Article  PubMed  CAS  Google Scholar 

  15. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    Article  PubMed  CAS  Google Scholar 

  16. Fox BM, Xiao X, Antony S, Kohlhagen G, Pommier Y, Staker BL, Stewart L, Cushman M (2003) Design, synthesis, and biological evaluation of cytotoxic 11-alkenylindenoisoquinoline topoisomerase I inhibitors and indenoisoquinoline-camptothecin hybrids. J Med Chem 46:3275–3282

    Article  PubMed  CAS  Google Scholar 

  17. Nagarajan M, Xiao X, Antony S, Kohlhagen G, Pommier Y, Cushman M (2003) Design, synthesis, and biological evaluation of indenoisoquinoline topoisomerase I inhibitors featuring polyamine side chains on the lactam nitrogen. J Med Chem 46:5712–5724

    Article  PubMed  CAS  Google Scholar 

  18. Tseng CH, Tzeng CC, Yang CL, Lu PJ, Chen HL, Li HY, Chuang YC, Yang CN, Chen YL (2010) Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Part 2. J Med Chem 53:6164–6179

    Article  PubMed  CAS  Google Scholar 

  19. Hooda J, Bednarski D, Irish L, Firestine SM (2006) Synthesis and testing of a triaza-cyclopenta[b]phenanthrene scaffold as a DNA binding agent. Bioorg Med Chem 14:1902–1909

    Article  PubMed  CAS  Google Scholar 

  20. Shahabuddin MS, Gopal M, Raghavan SC (2009) Intercalating, cytotoxic, antitumour activity of 8-chloro and 4-morpholinopyrimido [4′,5′:4,5]thieno(2,3-b)quinolines. J Photochem Photobiol, B 94:13–19

    Article  CAS  Google Scholar 

  21. Qiao C, Bi S, Sun Y, Song D, Zhang H, Zhou W (2008) Study of interactions of anthraquinones with DNA using ethidium bromide as a fluorescence probe. Spectrochim Acta A Mol Biomol Spectrosc 70:136–143

    Article  PubMed  Google Scholar 

  22. Arthanari H, Basu S, Kawano TL, Bolton PH (1998) Fluorescent dyes specific for quadruplex DNA. Nucleic Acids Res 26:3724–3728

    Article  PubMed  CAS  Google Scholar 

  23. Tse, WC, and Boger DL (2005). A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Curr Protoc Nucleic Acid Chem Chapter 8, Unit 8 5

  24. Patterson SE, Coxon JM, Strekowski L (1997) Intercalation of ethidium and analogues with nucleic acids: a molecular orbital study. Bioorg Med Chem 5:277–281

    Article  PubMed  CAS  Google Scholar 

  25. Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J Am Chem Soc 123:5878–5891

    Article  PubMed  CAS  Google Scholar 

  26. Tse WC, Ishii T, Boger DL (2003) Comprehensive high-resolution analysis of hairpin polyamides utilizing a fluorescent intercalator displacement (FID) assay. Bioorg Med Chem 11:4479–4486

    Article  PubMed  CAS  Google Scholar 

  27. Antony S, Agama KK, Miao ZH, Hollingshead M, Holbeck SL, Wright MH, Varticovski L, Nagarajan M, Morrell A, Cushman M et al (2006) Bisindenoisoquinoline bis-1,3-{(5,6-dihydro-5,11-diketo-11H-indeno[1,2-c]isoquinoline)-6-propyla mino}propane bis(trifluoroacetate) (NSC 727357), a DNA intercalator and topoisomerase inhibitor with antitumor activity. Mol Pharmacol 70:1109–1120

    Article  PubMed  CAS  Google Scholar 

  28. Martinez R, Chacon-Garcia L (2005) The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 12:127–151

    Article  PubMed  CAS  Google Scholar 

  29. Morrell A, Placzek MS, Steffen JD, Antony S, Agama K, Pommier Y, Cushman M (2007) Investigation of the lactam side chain length necessary for optimal indenoisoquinoline topoisomerase I inhibition and cytotoxicity in human cancer cell cultures. J Med Chem 50:2040–2048

    Article  PubMed  CAS  Google Scholar 

  30. Dallavalle S, Giannini G, Alloatti D, Casati A, Marastoni E, Musso L, Merlini L, Morini G, Penco S, Pisano C et al (2006) Synthesis and cytotoxic activity of polyamine analogues of camptothecin. J Med Chem 49:5177–5186

    Article  PubMed  CAS  Google Scholar 

  31. Hautefaye P, Cimetiere B, Pierre A, Leonce S, Hickman J, Laine W, Bailly C, Lavielle G (2003) Synthesis and pharmacological evaluation of novel non-lactone analogues of camptothecin. Bioorg Med Chem Lett 13:2731–2735

    Article  PubMed  CAS  Google Scholar 

  32. Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y (1999) Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18:1397–1406

    Article  PubMed  CAS  Google Scholar 

  33. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  34. Cotter TG, Lennon SV, Glynn JG, Martin SJ (1990) Cell death via apoptosis and its relationship to growth, development and differentiation of both tumour and normal cells. Anticancer Res 10:1153–1159

    PubMed  CAS  Google Scholar 

  35. Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants NSC 97-2311-B-006-003-MY3, NSC 97-2323-B-037-001, and NSC 97-2323-B-037-004 from the National Science Council, Taiwan.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yeh-Long Chen or Chia-Ning Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 13946 kb)

Supplementary material 2 (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YP., Chen, HL., Tzeng, CC. et al. TCH-1030 targeting on topoisomerase I induces S-phase arrest, DNA fragmentation, and cell death of breast cancer cells. Breast Cancer Res Treat 138, 383–393 (2013). https://doi.org/10.1007/s10549-013-2441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2441-1

Keywords

Navigation