Skip to main content

Advertisement

Log in

AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The AMP-activated protein kinase (AMPK) and hypoxia-inducible factor (HIF) signaling pathways are evolutionarily-conserved survival mechanisms responding to two fundamental stresses, energy deficiency and/or oxygen deprivation. The AMPK and HIF pathways regulate the function of a survival network with several transcription factors, e.g. FOXO, NF-κB, NRF2, and p53, as well as with protein kinases and other factors, such as mTOR, ULK1, HDAC5, and SIRT1. Given that AMPK and HIF activation can enhance not only healthspan and lifespan but also cancer growth in a context-dependent manner; it seems that cancer cells can hijack certain survival factors to maintain their growth in harsh conditions. AMPK activation improves energy metabolism, stimulates autophagy, and inhibits inflammation, whereas HIF-1α increases angiogenesis and helps cells to adapt to severe conditions. First we will review how AMPK and HIF signaling mechanisms control the function of an integrated survival network which is able not only to improve the regulation of longevity but also support the progression of tumorigenesis. We will also describe distinct crossroads between the regulation of longevity and cancer, e.g. specific regulation through the AMPKα and HIF-α isoforms, the Warburg effect, mitochondrial dynamics, and cellular senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahluwalia A, Jones MK, Szabo S, Tarnawski AS (2014) Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival. J Physiol Pharmacol 65:209–215

    CAS  PubMed  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alers S, Löffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464

    Article  CAS  PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1995) Mitochondrial decay in aging. Biochim Biophys Acta 1271:165–170

    Article  PubMed  Google Scholar 

  • Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  CAS  PubMed  Google Scholar 

  • Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251

    Article  CAS  PubMed  Google Scholar 

  • Arjamaa O, Nikinmaa M, Salminen A, Kaarniranta K (2009) Regulatory role of HIF-1α in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev 8:349–358

    Article  CAS  PubMed  Google Scholar 

  • Ashur-Fabian O, Avivi A, Trakhtenbrot L, Adamsky K, Cohen M, Kajakaro G, Joel A, Amariglio N, Nevo E, Rechavi G (2004) Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc Natl Acad Sci USA 101:12236–12241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astuti D, Ricketts CJ, Chowdhury R, McDonough MA, Gentle D, Kirby G, Schlisio S, Kenchappa RS, Carter BD, Kaelin WG Jr, Ratcliffe PJ, Schofield CJ, Latif F, Maher ER (2010) Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocr Relat Cancer 18:73–83

    Article  PubMed  CAS  Google Scholar 

  • Avalos Y, Canales J, Bravo-Sagua R, Criollo A, Lavandero S, Quest AF (2014) Tumor suppression and promotion by autophagy. Biomed Res Int 2014:603980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, Villen J, Wang B, Kim SR, Sakamoto K, Gygi SP, Cantley LC, Yaffe MB, Shokat KM, Brunet A (2011) Chemical genetic screen for AMPKα2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 44:878–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao Y, Mukai K, Hishiki T, Kubo A, Ohmura M, Sugiura Y, Matsuura T, Nagahata Y, Hayakawa N, Yamamoto T, Fukuda R, Saya H, Suematsu M, Minamishima YA (2013) Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo. Mol Cancer Res 11:973–985

    Article  CAS  PubMed  Google Scholar 

  • Bartoszewska S, Kochan K, Piotrowski A, Kamysz W, Ochocka RJ, Collawn JF, Bartoszewski R (2015) The hypoxia-inducible miR-429 regulates hypoxia-inducible factor-1α expression in human endothelial cells through a negative feedback loop. FASEB J 29:1467–1479

    Article  CAS  PubMed  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37:4587–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertero T, Robbe-Sermesant K, Le Brigand K, Ponzio G, Pottier N, Rezzonico R, Mazure NM, Barbry P, Mari B (2014) MicroRNA target identification: lessons from hypoxamiRs. Antioxid Redox Signal 21:1249–1268

    Article  CAS  PubMed  Google Scholar 

  • Bi TQ, Che XM (2010) Nampt/PBEF/visfatin and cancer. Cancer Biol Ther 10:119–125

    Article  CAS  PubMed  Google Scholar 

  • Biala AK, Dhingra R, Kirshenbaum LA (2015) Mitochondrial dynamics: orchestrating the journey to advanced age. J Mol Cell Cardiol 83:37–43

    Article  CAS  PubMed  Google Scholar 

  • Bigham AW, Lee FS (2014) Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev 28:2189–2204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blackstone C, Chang CR (2011) Mitochondria unite to survive. Nat Cell Biol 13:521–522

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2009) TOR-driven aging: speeding car without brakes. Cell Cycle 8:4055–4059

    Article  CAS  PubMed  Google Scholar 

  • Boland ML, Chourasia AH, Macleod KF (2013) Mitochondrial dysfunction in cancer. Front Oncol 3:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandauer J, Vienberg SG, Andersen MA, Ringholm S, Risis S, Larsen PS, Kristensen JM, Frosig C, Leick L, Fentz J, Jorgensen S, Kiens B, Wojtaszewski JF, Richter EA, Zierath JR, Goodyear LJ, Pilegaard H, Treebak JT (2013) AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle. J Physiol 591:5207–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown-Borg HM (2006) Longevity in mice: is stress resistance a common factor? Age 28:145–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruning U, Cerone L, Neufeld Z, Fitzpatrick SF, Cheong A, Scholz CC, Simpson DA, Leonard MO, Tambuwala MM, Cummins EP, Taylor CT (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1α activity during prolonged hypoxia. Mol Cell Biol 31:4087–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucala R, Donnelly SC (2007) Macrophage migration inhibitory factor: a probable link between inflammation and cancer. Immunity 26:281–285

    Article  CAS  PubMed  Google Scholar 

  • Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A 60:1369–1377

    Article  Google Scholar 

  • Burkewitz K, Zhang Y, Mair WB (2014) AMPK at the nexus of energetics and aging. Cell Metab 20:10–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Tu BP (2012) Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 28:59–87

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, Andersen JK, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canto C, Auwerx J (2011) Calorie restriction: is AMPK a key sensor and effector? Physiology 26:214–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carling D, Aguan K, Woods A, Verhoeven AJ, Beri RK, Brennan CH, Sidebottom C, Davison MD, Scott J (1994) Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 269:11442–11448

    CAS  PubMed  Google Scholar 

  • Caulin AF, Maley CC (2011) Peto’s Paradox: evolution’s prescription for cancer prevention. Trends Ecol Evol 26:175–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46:265–287

    Article  CAS  PubMed  Google Scholar 

  • Chan SY, Loscalzo J (2010) MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9:1072–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Su H, Zhang D, Wang Y, Shen Q, Liu B, Huang R, Zhou T, Peng C, Wong CC, Shen HM, Lippincott-Schwartz J, Liu W (2015) AMPK-dependent phosphorylation of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60:930–940

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Thomas EL, Kapahi P (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans. PLoS Genet 5:e1000486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen R, Dioum EM, Hogg RT, Gerard RD, Garcia JA (2011) Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J Biol Chem 286:13869–13878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yin C, Lao T, Liang D, He D, Wang C, Sang N (2015) AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle 14:2520–2536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi H, Chun YS, Kim TY, Park JW (2010) HIF-2α enhances β-catenin/TCF-driven transcription by interacting with β-catenin. Cancer Res 70:10101–10111

    Article  CAS  PubMed  Google Scholar 

  • Chou CC, Lee KH, Lai IL, Wang D, Mo X, Kulp SK, Shapiro CL, Chen CS (2014) AMPK reverses the mesenchymal phenotype of cancer cells by targeting the Akt-MDM2-Foxo3a signaling axis. Cancer Res 74:4783–4795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, Schödel J, Green CM, Camps C, Buffa F, Ratcliffe P, Ragoussis J, Harris AL, Mole DR (2015) Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene 34:4546

    Article  CAS  PubMed  Google Scholar 

  • Chuang HC, Chou CC, Kulp SK, Chen CS (2014) AMPK as a potential anticancer target—friend or foe? Curr Pharm Des 20:2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung HY, Lee EK, Choi YJ, Kim JM, Kim DH, Zou Y, Kim CH, Lee J, Kim HS, Kim ND, Jung JH, Yu BP (2011) Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 90:830–840

    Article  CAS  PubMed  Google Scholar 

  • Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  CAS  PubMed  Google Scholar 

  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–3394

    CAS  PubMed  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia-Melo C, Passos JF (2015) Mitochondria: are they causal players in cellular senescence? Biochim Biophys Acta 1847:1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Cottrill KA, Chan SY, Loscalzo J (2014) Hypoxamirs and mitochondrial metabolism. Antioxid Redox Signal 21:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R, Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N, Johnson RS (2003) HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuervo AM, Bergamini E, Brunk UT, Dröge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    Article  PubMed  Google Scholar 

  • Curtis R, O’Connor G, DiStefano PS (2006) Aging networks in Caenorhabditis elegans: aMP-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell 5:119–126

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Sampson SB (2016) HSF1: guardian of proteostasis in cancer. Trends Cell Biol 26:17–28

    Article  CAS  PubMed  Google Scholar 

  • Dancy BM, Sedensky MM, Morgan PG (2014) Effects of the mitochondrial respiratory chain on longevity in C. elegans. Exp Gerontol 56:245–255

    Article  CAS  PubMed  Google Scholar 

  • Dang CV (2012) MYC on the path to cancer. Cell 149:22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang K, Myers KA (2015) The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 16:6353–6372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Magalhaes JP (2013) How ageing processes influence cancer. Nat Rev Cancer 13:357–365

    Article  PubMed  CAS  Google Scholar 

  • Dehne N, Brune B (2009) HIF-1 in the inflammatory microenvironment. Exp Cell Res 315:1791–1797

    Article  CAS  PubMed  Google Scholar 

  • Delaney MA, Ward JM, Walsh TF, Chinnadurai SK, Kerns K, Kinsel MJ, Treuting PM (2016) Initial case reports of cancer in naked mole-rats (Heterocephalus glaber). Vet Pathol 53:691–696

    Article  CAS  PubMed  Google Scholar 

  • Della-Morte D, Guadagni F, Palmirotta R, Ferroni P, Testa G, Cacciatore F, Abete P, Rengo F, Perez-Pinzon MA, Sacco RL, Rundek T (2012) Genetics and genomics of ischemic tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics 13:1741–1757

    Article  CAS  PubMed  Google Scholar 

  • Dhingra R, Kirshenbaum LA (2014) Regulation of mitochondrial dynamics and cell fate. Circ J 78:803–810

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Chen J, Okon IS, Zou MH, Song P (2016) Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts. Int J Biochem Cell Biol 71:72–80

    Article  CAS  PubMed  Google Scholar 

  • Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA (2009) Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324:1289–1293

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, Choi HC, Zou MH (2010) Reduction of AMP-activated protein kinase α2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circulation 121:792–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan C (2016) Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol 10:C260–C269

    Article  Google Scholar 

  • Ducommun S, Deak M, Sumpton D, Ford RJ, Nunez Galindo A, Kussmann M, Viollet B, Steinberg GR, Foretz M, Dayon L, Morrice NA, Sakamoto K (2015) Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal 27:978–988

    Article  CAS  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  PubMed  Google Scholar 

  • Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97

    Article  CAS  PubMed  Google Scholar 

  • Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, Nappi TC, Comegna M, Romano S, Salvatore G, Santoro M, Cimino F (2012) A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 19:713–721

    Article  CAS  PubMed  Google Scholar 

  • Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, Dupuy F, Chambers C, Fuerth BJ, Viollet B, Mamer OA, Avizonis D, DeBerardinis RJ, Siegel PM, Jones RG (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17:113–124

    Article  CAS  PubMed  Google Scholar 

  • Faubert B, Vincent EE, Poffenberger MC, Jones RG (2015) The AMP-activated protein kinase (AMPK) and cancer: many faces of a metabolic regulator. Cancer Lett 356:165–170

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2015) The metabolic regulation of aging. Nat Med 21:1416–1423

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128:92–105

    Article  CAS  PubMed  Google Scholar 

  • Frenkel-Denkberg G, Gershon D, Levy AP (1999) The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice. FEBS Lett 462:341–344

    Article  CAS  PubMed  Google Scholar 

  • Frezza C, Gottlieb E (2009) Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 19:4–11

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27:2312–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu H, Luo F, Yang L, Wu W, Liu X (2010) Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1α dependent pathway. BMC Cell Biol 11:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu X, Zhu MJ, Dodson MV, Du M (2015) AMP-activated protein kinase stimulates Warburg-like glycolysis and activation of satellite cells during muscle regeneration. J Biol Chem 290:26445–26456

    Article  CAS  PubMed  Google Scholar 

  • Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallage S, Gil J (2016) Mitochondrial dysfunction meets senescence. Trends Biochem Sci 41:207–209

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, Codogno P, Debnath J, Gewirtz DA, Karantza V, Kimmelman A, Kumar S, Levine B, Maiuri MC, Martin SJ, Penninger J, Piacentini M, Rubinsztein DC, Simon HU, Simonsen A, Thorburn AM, Velasco G, Ryan KM, Kroemer G (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    Article  CAS  PubMed  Google Scholar 

  • Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11:335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410–7425

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, Brunet A (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282:30107–30119

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    Article  CAS  PubMed  Google Scholar 

  • Guido C, Whitaker-Menezes D, Lin Z, Pestell RG, Howell A, Zimmers TA, Casimiro MC, Aquila S, Ando S, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2012) Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth. Oncotarget 3:798–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology 29:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JM, Wilkinson JE, Miller RA (2010) Macrophage migration inhibitory factor-knockout mice are long lived and respond to caloric restriction. FASEB J 24:2436–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG (2014) Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem J 459:275–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkilä M, Pasanen A, Kivirikko KI, Myllyharju J (2011) Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell Mol Life Sci 68:3885–3901

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs D, Knauel M, Offermanns C, Berres ML, Nellen A, Leng L, Schmitz P, Bucala R, Trautwein C, Weber C, Bernhagen J, Wasmuth HE (2011) Macrophage migration inhibitory factor (MIF) exerts antifibrotic effects in experimental liver fibrosis via CD74. Proc Natl Acad Sci USA 108:17444–17449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Höglund P, Järvinen H, Kristo P, Pelin K, Ridanpää M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA (1998) A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391:184–187

    Article  CAS  PubMed  Google Scholar 

  • Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, Foss F, Dopeso H, Essmann CL, Maxwell PH, Reifenberger G, Carmeliet P, Acker-Palmer A, Acker T (2014) Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 5:5582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hindupur SK, Balaji SA, Saxena M, Pandey S, Sravan GS, Heda N, Kumar MV, Mukherjee G, Dey D, Rangarajan A (2014) Identification of a novel AMPK-PEA15 axis in the anoikis-resistant growth of mammary cells. Breast Cancer Res 16:420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hölscher M, Schäfer K, Krull S, Farhat K, Hesse A, Silter M, Lin Y, Pichler BJ, Thistlethwaite P, El-Armouche A, Maier LS, Katschinski DM, Zieseniss A (2012) Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc Res 94:77–86

    Article  PubMed  CAS  Google Scholar 

  • Hoppe S, Bierhoff H, Cado I, Weber A, Tiebe M, Grummt I, Voit R (2009) AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci USA 106:17781–17786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YY, Fu LA, Li SZ, Chen Y, Li JC, Han J, Liang L, Li L, Ji CC, Zheng MH, Han H (2014) Hif-1α and Hif-2α differentially regulate Notch signaling through competitive interaction with the intracellular domain of Notch receptors in glioma stem cells. Cancer Lett 349:67–76

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Fung ML, Liong EC, Tipoe GL, Tang F (2007) Age-related changes in adrenomedullin expression and hypoxia-inducible factor-1 activity in the rat lung and their responses to hypoxia. J Gerontol A 62:41–49

    Article  Google Scholar 

  • Ido Y, Duranton A, Lan F, Cacicedo JM, Chen TC, Breton L, Ruderman NB (2012) Acute activation of AMP-activated protein kinase prevents H2O2-induced premature senescence in primary human keratinocytes. PLoS One 7:e35092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Prasad D, Singh SB, Kohli E (2015) Hypobaric hypoxia imbalances mitochondrial dynamics in rat brain hippocampus. Neurol Res Int 2015:742059

    PubMed  PubMed Central  Google Scholar 

  • Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485:661–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128:36–44

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Tu K, Fu Q, Schmitt DC, Zhou L, Lu N, Zhao Y (2015) Multifaceted roles of HSF1 in cancer. Tumour Biol 36:4923–4931

    Article  CAS  PubMed  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Article  CAS  PubMed  Google Scholar 

  • Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, Jung JK, Kim YM, Park JJ, Kim J, Lee KH (2015) SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia. Biochem Biophys Res Commun 462:294–300

    Article  CAS  PubMed  Google Scholar 

  • Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84

    Article  CAS  PubMed  Google Scholar 

  • Jose C, Hebert-Chatelain E, Bellance N, Larendra A, Su M, Nouette-Gaulain K, Rossignol R (2011) AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim Biophys Acta 1807:707–718

    Article  CAS  PubMed  Google Scholar 

  • Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1β-mediated up-regulation of HIF-1α via an NF-κB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:2115–2117

    CAS  PubMed  Google Scholar 

  • Kang MJ, Kim HJ, Kim HK, Lee JY, Kim DH, Jung KJ, Kim KW, Baik HS, Yoo MA, Yu BP, Chung HY (2005) The effect of age and calorie restriction on HIF-1-responsive genes in aged liver. Biogerontology 6:27–37

    Article  CAS  PubMed  Google Scholar 

  • Kang HT, Lee KB, Kim SY, Choi HR, Park SC (2011) Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One 6:e23367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, van der Burg SH, Verdegaal EM, Cascante M, Shlomi T, Gottlieb E, Peeper DS (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498:109–112

    Article  CAS  PubMed  Google Scholar 

  • Karin M (2009) NF-κB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasznicki J, Sliwinska A, Drzewoski J (2014) Metformin in cancer prevention and therapy. Ann Transl Med 2:57

    PubMed  PubMed Central  Google Scholar 

  • Kayser EB, Sedensky MM, Morgan PG, Hoppel CL (2004) Mitochondrial oxidative phosphorylation is defective in the long-lived mutant clk-1. J Biol Chem 279:54479–54486

    Article  CAS  PubMed  Google Scholar 

  • Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22

    PubMed  PubMed Central  Google Scholar 

  • Kenific CM, Debnath J (2015) Cellular and metabolic functions for autophagy in cancer cells. Trends Cell Biol 25:37–45

    Article  CAS  PubMed  Google Scholar 

  • Kilic Eren M, Tabor V (2014) The role of hypoxia inducible factor-1α in bypassing oncogene-induced senescence. PLoS One 9:e101064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim WY, Sharpless NE (2006) The regulation of INK4/ARF in cancer and aging. Cell 127:265–275

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Yang EG (2015) Recent advances in developing inhibitors for hypoxia-inducible factor prolyl hydroxylases and their therapeutic implications. Molecules 20:20551–20568

    Article  CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    Article  PubMed  CAS  Google Scholar 

  • Kim KY, Baek A, Hwang JE, Choi YA, Jeong J, Lee MS, Cho DH, Lim JS, Kim KI, Yang Y (2009) Adiponectin-activated AMPK stimulates dephosphorylation of AKT through protein phosphatase 2A activation. Cancer Res 69:4018–4026

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K, Kubo A, Akai Y, Rankin EB, Neilson EG, Haase VH, Saito Y (2008) Stable expression of HIF-1α in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Ren Physiol 295:F1023–F1029

    Article  CAS  Google Scholar 

  • King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25:4675–4682

    Article  CAS  PubMed  Google Scholar 

  • Klaus A, Polge C, Zorman S, Auchli Y, Brunisholz R, Schlattner U (2012) A two-dimensional screen for AMPK substrates identifies tumor suppressor fumarate hydratase as a preferential AMPKα2 substrate. J Proteom 75:3304–3313

    Article  CAS  Google Scholar 

  • Kloet DE, Burgering BM (2011) The PKB/FOXO switch in aging and cancer. Biochim Biophys Acta 1813:1926–1937

    Article  CAS  PubMed  Google Scholar 

  • Koh MY, Powis G (2012) Passing the baton: the HIF switch. Trends Biochem Sci 37:364–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh MY, Darnay BG, Powis G (2008) Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1α, leading to its oxygen-independent degradation. Mol Cell Biol 28:7081–7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524–4532

    Article  CAS  PubMed  Google Scholar 

  • Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M (2006) Expanding role of AMPK in endocrinology. Trends Endocrinol Metab 17:205–215

    Article  CAS  PubMed  Google Scholar 

  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE (2004) HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J 23:1949–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan J, Ahuja P, Bodenmann S, Knapik D, Perriard E, Krek W, Perriard JC (2008) Essential role of developmentally activated hypoxia-inducible factor 1α for cardiac morphogenesis and function. Circ Res 103:1139–1146

    Article  CAS  PubMed  Google Scholar 

  • Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F, Feunteun J, Pouyssegur J, Richard S, Gardie B (2008) PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 359:2685–2692

    Article  CAS  PubMed  Google Scholar 

  • Laemmle A, Lechleiter A, Roh V, Schwarz C, Portmann S, Furer C, Keogh A, Tschan MP, Candinas D, Vorburger SA, Stroka D (2012) Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1α protein under hypoxic conditions. PLoS One 7:e33433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor micro environment. J Immunol Res 2014:149185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LaPak KM, Burd CE (2014) The molecular balancing act of p16(INK4a) in cancer and aging. Mol Cancer Res 12:167–183

    Article  CAS  PubMed  Google Scholar 

  • Lapointe J, Hekimi S (2008) Early mitochondrial dysfunction in long-lived Mclk1+/− mice. J Biol Chem 283:26217–26227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau AW, Liu P, Inuzuka H, Gao D (2014) SIRT1 phosphorylation by AMP-activated protein kinase regulates p53 acetylation. Am J Cancer Res 4:245–255

    PubMed  PubMed Central  Google Scholar 

  • Leduc-Gaudet JP, Picard M, St-Jean Pelletier F, Sgarioto N, Auger MJ, Vallee J, Robitaille R, St-Pierre DH, Gouspillou G (2015) Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget 6:17923–17937

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JM, Bernstein A (1995) Apoptosis, cancer and the p53 tumour suppressor gene. Cancer Metastasis Rev 14:149–161

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Jeong SY, Lim WC, Kim S, Park YY, Sun X, Youle RJ, Cho H (2007) Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 282:22977–22983

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, Hwang AB, Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20:2131–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Kim JH, Kim JS, Chang JW, Kim SB, Park JS, Lee SK (2013) AMP-activated protein kinase inhibits TGF-β-, angiotensin II-, aldosterone-, high glucose-, and albumin-induced epithelial-mesenchymal transition. Am J Physiol Ren Physiol 304:F686–F697

    Article  CAS  Google Scholar 

  • Lee IJ, Lee CW, Lee JH (2015) CaMKKβ-AMPKα2 signaling contributes to mitotic Golgi fragmentation and the G2/M transition in mammalian cells. Cell Cycle 14:598–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Leiser SF, Fletcher M, Begun A, Kaeberlein M (2013) Life-span extension from hypoxia in Caenorhabditis elegans requires both HIF-1 and DAF-16 and is antagonized by SKN-1. J Gerontol A 68:1135–1144

    Article  CAS  Google Scholar 

  • Leontieva OV, Natarajan V, Demidenko ZN, Burdelya LG, Gudkov AV, Blagosklonny MV (2012) Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci USA 109:13314–13318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesnefsky EJ, Hoppel CL (2006) Oxidative phosphorylation and aging. Ageing Res Rev 5:402–433

    Article  CAS  PubMed  Google Scholar 

  • Lewis KN, Andziak B, Yang T, Buffenstein R (2013) The naked mole-rat response to oxidative stress: just deal with it. Antioxid Redox Signal 19:1388–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Wang Y, Wang Y, Wen X, Ma XN, Chen W, Huang F, Kou J, Qi LW, Liu B, Liu K (2015) Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J Mol Cell Cardiol 86:62–74

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Mills GB (2013) AMPK: a contextual oncogene or tumor suppressor? Cancer Res 73:2929–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Huang B, Song E, Bai B, Wang Y (2014) Constitutive activation of AMPK α1 in vascular endothelium promotes high-fat diet-induced fatty liver injury: role of COX-2 induction. Br J Pharmacol 171:498–508

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol Cell 38:864–878

    Article  CAS  PubMed  Google Scholar 

  • Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH (2013) Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 58:219–230

    Article  PubMed  Google Scholar 

  • Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z (2015) AMPK inhibits the stimulatory effects of TGF-β on Smad2/3 activity, cell migration, and epithelial-to-mesenchymal transition. Mol Pharmacol 88:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Chan DC (2015) The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol Biol Cell 26:4466–4477

    Article  PubMed  PubMed Central  Google Scholar 

  • Loboda A, Jozkowicz A, Dulak J (2012) HIF-1 versus HIF-2—is one more important than the other? Vasc Pharmacol 56:245–251

    Article  CAS  Google Scholar 

  • Lopez-Novoa JM, Nieto MA (2009) Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1:303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz DR, Cantor CR, Collins JJ (2009) A network biology approach to aging in yeast. Proc Natl Acad Sci USA 106:1145–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing J, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG Jr, Koivunen P, Prchal JT (2014) A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet 46:951–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Zang M, Guo W (2010) AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 6:457–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Y, Zhao S, Han J, Zheng L, Yang Z, Zhao L (2015) Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer. Onco Targets Ther 8:1941–1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma H, Wang J, Thomas DP, Tong C, Leng L, Wang W, Merk M, Zierow S, Bernhagen J, Ren J, Bucala R, Li J (2010) Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart. Circulation 122:282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125:85–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Mai S, Klinkenberg M, Auburger G, Bereiter-Hahn J, Jendrach M (2010) Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J Cell Sci 123:917–926

    Article  CAS  PubMed  Google Scholar 

  • Mair W, Morantte I, Rodrigues AP, Manning G, Montminy M, Shaw RJ, Dillin A (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470:404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandic M, Todgham AE, Richards JG (2009) Mechanisms and evolution of hypoxia tolerance in fish. Proc Biol Sci 276:735–744

    Article  CAS  PubMed  Google Scholar 

  • Manov I, Hirsh M, Iancu TC, Malik A, Sotnichenko N, Band M, Avivi A, Shams I (2013) Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC Biol 11:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, Thenappan T, Piao L, Zhang HJ, Pogoriler J, Chen Y, Morrow E, Weir EK, Rehman J, Archer SL (2012) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110:1484–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masoud GN, Wang J, Chen J, Miller D, Li W (2015) Design, synthesis and biological evaluation of novel HIF1α inhibitors. Anticancer Res 35:3849–3859

    CAS  PubMed  Google Scholar 

  • McCarty MF (2014) AMPK activation—protean potential for boosting healthspan. Age 36:641–663

    Article  CAS  PubMed  Google Scholar 

  • Miller EJ, Li J, Leng L, McDonald C, Atsumi T, Bucala R, Young LH (2008) Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature 451:578–582

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 12:379–387

    Article  CAS  Google Scholar 

  • Mishur RJ, Khan M, Munkacsy E, Sharma L, Bokov A, Beam H, Radetskaya O, Borror M, Lane R, Bai Y, Rea SL (2016) Mitochondrial metabolites extend lifespan. Aging Cell 15:336–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Oshiro N, Yoshino K, Nakashima A, Eguchi S, Takahashi M, Ono Y, Kikkawa U, Yonezawa K (2008) AMP-activated protein kinase phosphorylates Golgi-specific brefeldin A resistance factor 1 at Thr1337 to induce disassembly of Golgi apparatus. J Biol Chem 283:4430–4438

    Article  CAS  PubMed  Google Scholar 

  • Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ (2009) Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 284:16767–16775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mooi WJ, Peeper DS (2006) Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 355:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Munkacsy E, Rea SL (2014) The paradox of mitochondrial dysfunction and extended longevity. Exp Gerontol 56:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami S (2006) Stress resistance in long-lived mouse models. Exp Gerontol 41:1014–1019

    Article  CAS  PubMed  Google Scholar 

  • Ndubuizu OI, Chavez JC, LaManna JC (2009) Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain. Am J Physiol Regul Integr Comp Physiol 297:R158–R165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DM, McBryan T, Jeyapalan JC, Sedivy JM, Adams PD (2014) A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging. Age 36:9637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ng TL, Leprivier G, Robertson MD, Chow C, Martin MJ, Laderoute KR, Davicioni E, Triche TJ, Sorensen PH (2012) The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death Differ 19:501–510

    Article  CAS  PubMed  Google Scholar 

  • No YR, Lee SJ, Kumar A, Yun CC (2015) HIF1α-induced by lysophosphatidic acid is stabilized via interaction with MIF and CSN5. PLoS One 10:e0137513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oettinghaus B, Licci M, Scorrano L, Frank S (2012) Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration. Acta Neuropathol 123:189–203

    Article  CAS  PubMed  Google Scholar 

  • Ombrato L, Malanchi I (2014) The EMT universe: space between cancer cell dissemination and metastasis initiation. Crit Rev Oncog 19:349–361

    Article  PubMed  Google Scholar 

  • O’Neill LA, Hardie DG (2013) Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 493:346–355

    Article  PubMed  CAS  Google Scholar 

  • Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121:2012–2022

    Article  CAS  PubMed  Google Scholar 

  • Palsson-McDermott EM, O’Neill LA (2013) The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays 35:965–973

    Article  CAS  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  CAS  PubMed  Google Scholar 

  • Parra M (2015) Class IIa HDACs—new insights into their functions in physiology and pathology. FEBS J 282:1736–1744

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PL (2007) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39:211–222

    Article  CAS  PubMed  Google Scholar 

  • Peto R, Roe FJ, Lee PN, Levy L, Clack J (1975) Cancer and ageing in mice and men. Br J Cancer 32:411–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philipp EE, Abele D (2010) Masters of longevity: lessons from long-lived bivalves—a mini-review. Gerontology 56:55–65

    Article  CAS  PubMed  Google Scholar 

  • Phoenix KN, Devarakonda CV, Fox MM, Stevens LE, Claffey KP (2012) AMPKα2 suppresses murine embryonic fibroblast transformation and tumorigenesis. Genes Cancer 3:51–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou YH, White MA, Potts PR (2015) Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160:715–728

    Article  CAS  PubMed  Google Scholar 

  • Pinter K, Jefferson A, Czibik G, Watkins H, Redwood C (2012) Subunit composition of AMPK trimers present in the cytokinetic apparatus: implications for drug target identification. Cell Cycle 11:917–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T, Adjaye J (2014) HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells 32:364–376

    Article  CAS  PubMed  Google Scholar 

  • Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S, Jung YK (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qing G, Simon MC (2009) Hypoxia inducible factor-2α: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev 19:60–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu A, Taylor M, Xue X, Matsubara T, Metzger D, Chambon P, Gonzalez FJ, Shah YM (2011) Hypoxia-inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 54:472–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinowitz MH (2013) Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. J Med Chem 56:9369–9402

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan SK, Shah YM (2016) Role of intestinal HIF-2α in health and disease. Annu Rev Physiol 78:301–325

    Article  CAS  PubMed  Google Scholar 

  • Redpath CJ, Bou Khalil M, Drozdzal G, Radisic M, McBride HM (2013) Mitochondrial hyperfusion during oxidative stress is coupled to a dysregulation in calcium handling within a C2C12 cell model. PLoS One 8:e69165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rendon BE, Willer SS, Zundel W, Mitchell RA (2009) Mechanisms of macrophage migration inhibitory factor (MIF)-dependent tumor microenvironmental adaptation. Exp Mol Pathol 86:180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5:151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezvani HR, Ali N, Serrano-Sanchez M, Dubus P, Varon C, Ged C, Pain C, Cario-Andre M, Seneschal J, Taieb A, de Verneuil H, Mazurier F (2011) Loss of epidermal hypoxia-inducible factor-1α accelerates epidermal aging and affects re-epithelialization in human and mouse. J Cell Sci 124:4172–4183

    Article  CAS  PubMed  Google Scholar 

  • Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG, Karin M (2008) NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453:807–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM (2000) Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 275:29643–29647

    Article  CAS  PubMed  Google Scholar 

  • Rodgers KJ, Ford JL, Brunk UT (2009) Heat shock proteins: keys to healthy ageing? Redox Rep 14:147–153

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrbach S, Simm A, Pregla R, Franke C, Katschinski DM (2005) Age-dependent increase of prolyl-4-hydroxylase domain (PHD) 3 expression in human and mouse heart. Biogerontology 6:165–171

    Article  CAS  PubMed  Google Scholar 

  • Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updates 14:191–201

    Article  CAS  Google Scholar 

  • Rohwer N, Zasada C, Kempa S, Cramer T (2013) The growing complexity of HIF-1α’s role in tumorigenesis: DNA repair and beyond. Oncogene 32:3569–3576

    Article  CAS  PubMed  Google Scholar 

  • Roitbak T, Surviladze Z, Cunningham LA (2011) Continuous expression of HIF-1α in neural stem/progenitor cells. Cell Mol Neurobiol 31:119–133

    Article  CAS  PubMed  Google Scholar 

  • Ross FA, MacKintosh C, Hardie DG (2016) AMP-activated protein kinase: a cellular energy sensor that comes in twelve flavours. FEBS J. doi:10.1111/febs.13698

    PubMed  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  • Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2010) Glycolysis links p53 function with NF-κB signaling: impact on cancer and aging process. J Cell Physiol 224:1–6

    CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2011) Control of p53 and NF-κB signaling by WIP1 and MIF: role in cellular senescence and organismal aging. Cell Signal 23:747–752

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11:230–241

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-κB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med 89:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24:835–845

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2015) 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell Mol Life Sci 72:3897–3914

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kaarniranta K, Kauppinen A (2016) Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 28:15–26

    Article  CAS  PubMed  Google Scholar 

  • Sanchez M, Galy B, Muckenthaler MU, Hentze MW (2007) Iron-regulatory proteins limit hypoxia-inducible factor-2α expression in iron deficiency. Nat Struct Mol Biol 14:420–426

    Article  CAS  PubMed  Google Scholar 

  • Sanderson TH, Raghunayakula S, Kumar R (2015) Neuronal hypoxia disrupts mitochondrial fusion. Neuroscience 301:71–78

    Article  CAS  PubMed  Google Scholar 

  • Sanz P, Rubio T, Garcia-Gimeno MA (2013) AMPKβ subunits: more than just a scaffold in the formation of AMPK complex. FEBS J 280:3723–3733

    Article  CAS  PubMed  Google Scholar 

  • Schaffer BE, Levin RS, Hertz NT, Maures TJ, Schoof ML, Hollstein PE, Benayoun BA, Banko MR, Shaw RJ, Shokat KM, Brunet A (2015) Identification of AMPK phosphorylation sites reveals a network of proteins involved in cell invasion and facilitates large-scale substrate prediction. Cell Metab 22:907–921

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Hangmann J, Shams I, Avivi A, Hankeln T (2016) Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: the Nrf2-Keap1 pathway. Gene 577:293–298

    Article  CAS  PubMed  Google Scholar 

  • Schülke S, Dreidax D, Malik A, Burmester T, Nevo E, Band M, Avivi A, Hankeln T (2012) Living with stress: regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat, Spalax. Gene 500:199–206

    Article  PubMed  CAS  Google Scholar 

  • Schwarz F, Karadeniz Z, Fischer-Rosinsky A, Willmes DM, Spranger J, Birkenfeld AL (2015) Knockdown of Indy/CeNac2 extends Caenorhabditis elegans life span by inducing AMPK/aak-2. Aging 7:553–567

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763

    CAS  PubMed  Google Scholar 

  • Senft D, Ronai ZA (2016) Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol 39:43–52

    Article  CAS  PubMed  Google Scholar 

  • Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano M, Blasco MA (2007) Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 8:715–722

    Article  CAS  PubMed  Google Scholar 

  • Sgarbi G, Matarrese P, Pinti M, Lanzarini C, Ascione B, Gibellini L, Dika E, Patrizi A, Tommasino C, Capri M, Cossarizza A, Baracca A, Lenaz G, Solaini G, Franceschi C, Malorni W, Salvioli S (2014) Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging 6:296–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9:563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shams I, Avivi A, Nevo E (2004) Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1α. Proc Natl Acad Sci USA 101:9698–9703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shutt T, Geoffrion M, Milne R, McBride HM (2012) The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep 13:909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4:176–184

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730

    Article  PubMed  Google Scholar 

  • Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  • Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM (2013) Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y (2014) Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 114:58–83

    Article  PubMed  Google Scholar 

  • Storey KB (2007) Anoxia tolerance in turtles: metabolic regulation and gene expression. Comp Biochem Physiol A 147:263–276

    Article  CAS  Google Scholar 

  • Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666

    Article  CAS  PubMed  Google Scholar 

  • Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JM, McMurtry MS, Michelakis ED (2013) Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene 32:1638–1650

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kato H, Kojima I, Ohse T, Son D, Tawakami T, Yatagawa T, Inagi R, Fujita T, Nangaku M (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A 61:795–805

    Article  Google Scholar 

  • Taylor CT, McElwain JC (2010) Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25:272–279

    Article  CAS  PubMed  Google Scholar 

  • Taylor KR, Milone NA, Rodriguez CE (2016) Four cases of spontaneous neoplasia in the naked mole-rat (Heterocephalus glaber), a putative cancer-resistant species. J Gerontol A. doi:10.1093/gerona/glw047

    Google Scholar 

  • Thaiparambil JT, Eggers CM, Marcus AI (2012) AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain. Mol Cell Biol 32:3203–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas A, Belaidi E, Aron-Wisnewsky J, van der Zon Levy P, Clement K, Pepin JL, Godin-Ribuot D, Guigas B (2016) Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep 6:24618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M, Vellai T (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4:330–338

    Article  CAS  PubMed  Google Scholar 

  • Toussaint O, Medrano EE, von Zglinicki T (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35:927–945

    Article  CAS  PubMed  Google Scholar 

  • Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Loson OC, Hellberg K, Young NP, Chen H, Polleux F, Chan DC, Shaw RJ (2016) AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, Hung SC (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117:459–469

    Article  CAS  PubMed  Google Scholar 

  • Ulgherait M, Rana A, Rera M, Graniel J, Walker DW (2014) AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep 8:1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Patot MC, Gassmann M (2011) Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Alt Med Biol 12:157–167

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009) The active form of the metabolic sensor: AMP-activated protein kinase (AMPK) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis. Cell Cycle 8:2385–2398

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Menendez JA (2011) Polo-like kinase 1 regulates activation of AMP-activated protein kinase (AMPK) at the mitotic apparatus. Cell Cycle 10:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Vink A, Schoneveld AH, Lamers D, Houben AJ, van der Groep P, van Diest PJ, Pasterkamp G (2007) HIF-1α expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages. Atherosclerosis 195:e69–e75

    Article  CAS  PubMed  Google Scholar 

  • Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S (2003) The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111:91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, Lantier L, Hebrard S, Devin-Leclerc J, Beauloye C, Foretz M, Andreelli F, Ventura-Clapier R, Bertrand L (2009) AMPK: lessons from transgenic and knockout animals. Front Biosci 14:19–44

    Article  CAS  Google Scholar 

  • Walter KM, Schönenberger MJ, Trötzmuller M, Horn M, Elsässer HP, Moser AB, Lucas MS, Schwarz T, Gerber PA, Faust PL, Moch H, Köfeler HC, Krek W, Kovacs WJ (2014) Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. Cell Metab 20:882–897

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Guan KL (2009) AMP-activated protein kinase and cancer. Acta Physiol 196:55–63

    Article  CAS  Google Scholar 

  • Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warnecke C, Weidemann A, Volke M, Schietke R, Wu X, Knaup KX, Hackenbeck T, Bernhardt W, Willam C, Eckardt KU, Wiesener MS (2008) The specific contribution of hypoxia-inducible factor-2α to hypoxic gene expression in vitro is limited and modulated by cell type-specific and exogenous factors. Exp Cell Res 314:2016–2027

    Article  CAS  PubMed  Google Scholar 

  • Wei C, Bhattaram VK, Igwe JC, Fleming E, Tirnauer JS (2012) The LKB1 tumor suppressor controls spindle orientation and localization of activated AMPK in mitotic epithelial cells. PLoS One 7:e41118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welford SM, Bedogni B, Gradin K, Poellinger L, Broome Powell M, Giaccia AJ (2006) HIF1α delays premature senescence through the activation of MIF. Genes Dev 20:3366–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White E (2015) The role for autophagy in cancer. J Clin Invest 125:42–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiesener MS, Jürgensen JS, Rosenberger C, Scholze CK, Hörstrup JH, Warnecke C, Mandriota S, Bechmann I, Frei UA, Pugh CW, Ratcliffe PJ, Bachmann S, Maxwell PH, Eckardt KU (2003) Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J 17:271–273

    CAS  PubMed  Google Scholar 

  • Wikstrom JD, Israeli T, Bachar-Wikstrom E, Swisa A, Ariav Y, Waiss M, Kaganovich D, Dor Y, Cerasi E, Leibowitz G (2013) AMPK regulates ER morphology and function in stressed pancreatic β-cells via phosphorylation of DRP1. Mol Endocrinol 27:1706–1723

    Article  CAS  PubMed  Google Scholar 

  • Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, Shirakawa K, Lim HW, Davis SS, Ramanathan A, Gerencser AA, Verdin E, Campisi J (2016) Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab 23:303–314

    Article  CAS  PubMed  Google Scholar 

  • Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA (2007) Amplification of tumor hypoxic responses by macrophage migration inhibitory factor-dependent hypoxia-inducible factor stabilization. Cancer Res 67:186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Zhang F, Xie C, Jiang M, Hou M (2015) Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells. Stem Cell Res Ther 6:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski SM, Huang Z, Fang X, Shi Y, Ferguson AN, Kashatus DF, Bao S, Rich JN (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Zhou Y, Coughlan KA, Ding Y, Wang S, Wu Y, Song P, Zou MH (2015) AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts. Biochim Biophys Acta 1853:65–73

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi O, Murakawa T, Nishida K, Otsu K (2016) Receptor-mediated mitophagy. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2016.03.010

    PubMed  Google Scholar 

  • Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ (2008) Direct regulation of TWIST by HIF-1α promotes metastasis. Nat Cell Biol 10:295–305

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, Min BH, Chun JS (2010) Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med 16:687–693

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Ryu JH, Oh H, Jeon J, Kwak JS, Kim JH, Kim HA, Chun CH, Chun JS (2015) NAMPT (visfatin), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis. Ann Rheum Dis 74:595–602

    Article  PubMed  CAS  Google Scholar 

  • Yavari A, Stocker CJ, Ghaffari S, Wargent ET, Steeples V, Czibik G, Pinter K, Bellahcene M, Woods A, Martínez de Morentin PB, Cansell C, Lam BY, Chuster A, Petkevicius K, Nguyen-Tu MS, Martinez-Sanchez A, Pullen TJ, Oliver PL, Stockenhuber A, Nguyen C, Lazdam M, O’Dowd JF, Harikumar P, Toth M, Beall C, Kyriakou T, Parnis J, Sarma D, Katritsis G, Wortmann DD, Harper AR, Brown LA, Willows R, Gandra S, Poncio V, de Oliveira Figueiredo MJ, Qi NR, Peirson SN, McCrimmon RJ, Gereben B, Tretter L, Fekete C, Redwood C, Yeo GS, Heisler LK, Rutter GA, Smith MA, Withers DJ, Carling D, Sternick EB, Arch JR, Cawthorne MA, Watkins H, Ashrafian H (2016) Chronic activation of γ2 AMPK induces obesity and reduces β cell function. Cell Metab 23:821–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen WL, Klionsky DJ (2008) How to live long and prosper: autophagy, mitochondria, and aging. Physiology 23:248–262

    Article  CAS  PubMed  Google Scholar 

  • Yoo LI, Chung DC, Yuan J (2002) LKB1—a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer 2:529–535

    Article  CAS  PubMed  Google Scholar 

  • Yoon YS, Yoon DS, Lim IK, Yoon SH, Chung HY, Rojo M, Malka F, Jou MJ, Martinou JC, Yoon G (2006) Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol 209:468–480

    Article  CAS  PubMed  Google Scholar 

  • Yung MM, Chan DW, Liu VW, Yao KM, Ngan HY (2013) Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer 13:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadra G, Batista JL, Loda M (2015) Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res 13:1059–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemirli N, Pourcelot M, Ambroise G, Hatchi E, Vazquez A, Arnoult D (2014) Mitochondrial hyperfusion promotes NF-κB activation via the mitochondrial E3 ligase MULAN. FEBS J 281:3095–3112

    Article  CAS  PubMed  Google Scholar 

  • Zhang CS, Lin SC (2016) AMPK promotes autophagy by facilitating mitochondrial fission. Cell Metab 23:399–401

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Shao Z, Zhai Z, Shen C, Powell-Coffman JA (2009) The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans. PLoS One 4:e6348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Yi Y, Guo Q, Sun Y, Ma S, Xiao S, Geng J, Zheng Z, Song S (2012) Hsp90 interacts with AMPK and mediates acetyl-CoA carboxylase phosphorylation. Cell Signal 24:859–865

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Yao Q, Lu L, Li Y, Chen PJ, Duan C (2014) Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6:1110–1121

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K, Sesaki H, Poon WW, Gylys KH, Patterson ER, Parisi JE, Diaz Brinton R, Salisbury JL, Trushina E (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep 6:18725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Matsuo-Takasaki M, Tsuboi I, Kimura K, Salazar GT, Yamashita T, Ohneda O (2014) Dual functions of hypoxia-inducible factor 1α for the commitment of mouse embryonic stem cells toward a neural lineage. Stem Cells Dev 23:2143–2155

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Lam PY, Han D, Cadenas E (2009) Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging. FEBS Lett 583:1132–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Chen J, Yi G, Deng M, Liu H, Liang M, Shi B, Fu X, Chen Y, Chen L, He Z, Wang J, Liu J (2016) Metformin suppresses hypoxia-induced stabilization of HIF-1α through reprogramming of oxygen metabolism in hepatocellular carcinoma. Oncotarget 7:873–884

    PubMed  Google Scholar 

  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99:15983–15987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the grants from the Academy of Finland, the University of Eastern Finland, VTR funding from Kuopio University Hospital, the Finnish Cultural Foundation, the Finnish Eye Foundation, and the Alfred Kordelin Foundation. The authors thank Dr. Ewen MacDonald for checking the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antero Salminen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salminen, A., Kaarniranta, K. & Kauppinen, A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 17, 655–680 (2016). https://doi.org/10.1007/s10522-016-9655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-016-9655-7

Keywords

Navigation