Skip to main content
Log in

Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis and oncotic necrosis in neuronal and glial cells have been documented in many neurological diseases. Distinguishing between these two major types of cell death in different neurological diseases is needed in order to better reveal the injury mechanisms so as to open up opportunities for therapy development. Accumulating evidence suggests apoptosis and oncosis epitomize the extreme ends of a broad spectrum of morphological and biochemical events. Biochemical markers that can distinguish between the calpain and caspase dominated types of cell death would help in this process. In this study, three chemical agents, maitotoxin (MTX), staurosporine (STS) and thylenediaminetetraacetic acid (EDTA), were used to induce different types of cell death in PC12 neuronal-like cells. MTX-induced necrosis, as determined by the increased levels of calpain-specific cleaved fragments of spectrin by antibodies specific to the calpain-cleaved 150 kDa αII-spectrin breakdown product (SBDP150) and 145 kDa αII-spectrin breakdown product (SBDP145). In this paradigm, there were no detectable SBDP150i and SBDP120 fragments as determined by antibodies specific to the caspase-cleaved specific fragments similar to those seen in the EDTA-mediated apoptotic PC-12 cells. In contrast to the calpain specific MTX necrosis treatment and the caspase EDTA apoptotic treatment is the STS treatment which induced both proteases as shown by the increase in all the SBDP fragments. Furthermore, compared to SBDP150, SBDP145 appears to be a more specific and sensitive biomarker for calpain activation. Taken together, our results suggested calpains and caspases which dominate the two major types of cell death could be independently discriminated by specifically examining the multiple αII-spectrin cleavage breakdown products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SBDP:

Spectrin breakdown product

MTX:

Maitotoxin

STS:

Staurosporine

EDTA:

Ethylenediaminetetraacetic acid

TBI:

Traumatic brain injury

PCD:

Programmed cell death

References

  1. Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J Neurotrauma 17:927–938

    Article  PubMed  CAS  Google Scholar 

  2. Pike BR, Flint J, Dave JR et al (2004) Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 24:98–106

    Article  PubMed  CAS  Google Scholar 

  3. Behl C (2000) Apoptosis and Alzheimer’s disease. J Neural Transm 107:1325–1344

    Article  PubMed  CAS  Google Scholar 

  4. Clark RS, Chen J, Watkins SC et al (1997) Apoptosis-suppressor gene bcl-2 expression after traumatic brain injury in rats. J Neurosci 17:9172–9182

    PubMed  CAS  Google Scholar 

  5. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    PubMed  CAS  Google Scholar 

  6. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    PubMed  Google Scholar 

  7. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26

    Article  PubMed  Google Scholar 

  8. Beer R, Franz G, Srinivasan A et al (2000) Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. J Neurochem 75:1264–1273

    Article  PubMed  CAS  Google Scholar 

  9. Vanderklish PW, Bahr BA (2000) The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81:323–339

    Article  PubMed  CAS  Google Scholar 

  10. Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  CAS  Google Scholar 

  11. Van Cruchten S, Van Den Broeck W (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 31:214–223

    Article  PubMed  Google Scholar 

  12. Lecoeur H, Prevost MC, Gougeon ML (2001) Oncosis is associated with exposure of phosphatidylserine residues on the outside layer of the plasma membrane: a reconsideration of the specificity of the annexin V/propidium iodide assay. Cytometry 44:65–72

    Article  PubMed  CAS  Google Scholar 

  13. Rathmell JC, Thompson CB (1999) The central effectors of cell death in the immune system. Annu Rev Immunol 17:781–828

    Article  PubMed  CAS  Google Scholar 

  14. Lockshin RA, Zakeri Z (2004) Caspase-independent cell death? Oncogene 23:2766–2773

    Article  PubMed  CAS  Google Scholar 

  15. Susin SA, Zamzami N, Castedo M et al (1997) The central executioner of apoptosis: multiple connections between protease activation and mitochondria in Fas/APO-1/CD95- and ceramide-induced apoptosis. J Exp Med 186:25–37

    Article  PubMed  CAS  Google Scholar 

  16. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  17. Castillo MR, Babson JR (1998) Ca(2+)-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience 86:1133–1144

    Article  PubMed  CAS  Google Scholar 

  18. Farber E (1994) Programmed cell death: necrosis versus apoptosis. Mod Pathol 7:605–609

    PubMed  CAS  Google Scholar 

  19. Levin S (1998) Apoptosis, necrosis, or oncosis: what is your diagnosis? A report from the Cell Death Nomenclature Committee of the Society of Toxicologic Pathologists. Toxicol Sci 41:155–156

    Article  PubMed  CAS  Google Scholar 

  20. Hirsch T, Marchetti P, Susin SA et al (1997) The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15:1573–1581

    Article  PubMed  CAS  Google Scholar 

  21. Criddle DN, Gerasimenko JV, Baumgartner HK et al (2007) Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ 14:1285–1294

    Article  PubMed  CAS  Google Scholar 

  22. Muller GJ, Stadelmann C, Bastholm L, Elling F, Lassmann H, Johansen FF (2004) Ischemia leads to apoptosis- and necrosis-like neuron death in the ischemic rat hippocampus. Brain Pathol 14:415–424

    PubMed  Google Scholar 

  23. Friedman LM, Furberg CD, DeMets DL (1998) Fundamentals of clinical trials, 3rd edn. Springer-Verlag, St Louis, MO

    Google Scholar 

  24. Lewis SB, Velat GJ, Miralia L et al (2007) Alpha-II spectrin breakdown products in aneurysmal subarachnoid hemorrhage: a novel biomarker of proteolytic injury. J Neurosurg 107:792–796

    Article  PubMed  CAS  Google Scholar 

  25. Ringger NC, O’Steen BE, Brabham JG et al (2004) A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. J Neurotrauma 21:1443–1456

    Article  PubMed  CAS  Google Scholar 

  26. Pike BR, Flint J, Dutta S, Johnson E, Wang KK, Hayes RL (2001) Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 78:1297–1306

    Article  PubMed  CAS  Google Scholar 

  27. Cardali S, Maugeri R (2006) Detection of alphaII-spectrin and breakdown products in humans after severe traumatic brain injury. J Neurosurg Sci 50:25–31

    PubMed  CAS  Google Scholar 

  28. Huh GY, Glantz SB, Je S, Morrow JS, Kim JH (2001) Calpain proteolysis of alpha II-spectrin in the normal adult human brain. Neurosci Lett 316:41–44

    Article  PubMed  CAS  Google Scholar 

  29. Riederer BM, Zagon IS, Goodman SR (1986) Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol 102:2088–2097

    Article  PubMed  CAS  Google Scholar 

  30. Meary F, Metral S, Ferreira C et al (2007) A mutant alphaII-spectrin designed to resist calpain and caspase cleavage questions the functional importance of this process in vivo. J Biol Chem 282:14226–14237

    Article  PubMed  CAS  Google Scholar 

  31. Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 2:1–12

    PubMed  CAS  Google Scholar 

  32. Povlishock JT, Stone JR (2001) Traumatic axonal injury. In: Langston JW (ed) Head trauma basic, preclinical, and clinical directions. Wiley, New York, pp. 281–301

    Google Scholar 

  33. Bouvry D, Planes C, Malbert-Colas L, Escabasse V, Clerici C (2006) Hypoxia-induced cytoskeleton disruption in alveolar epithelial cells. Am J Respir Cell Mol Biol 35:519–527

    Article  PubMed  CAS  Google Scholar 

  34. Das A, Belagodu A, Reiter RJ, Ray SK, Banik NL (2008) Cytoprotective effects of melatonin on C6 astroglial cells exposed to glutamate excitotoxicity and oxidative stress. J Pineal Res 45:117–124

    Article  PubMed  CAS  Google Scholar 

  35. Del Rio P, Montiel T, Massieu L (2008) Contribution of NMDA and non-NMDA receptors to in vivo glutamate-induced calpain activation in the rat striatum. Relation to neuronal damage. Neurochem Res 33:1475–1483

    Article  PubMed  CAS  Google Scholar 

  36. Kawamura M, Nakajima W, Ishida A, Ohmura A, Miura S, Takada G (2005) Calpain inhibitor MDL 28170 protects hypoxic-ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis. Brain Res 1037:59–69

    Article  PubMed  CAS  Google Scholar 

  37. Koumura A, Nonaka Y, Hyakkoku K et al (2008) A novel calpain inhibitor, ((1S)-1((((1S)-1-benzyl-3-cyclopropylamino-2, 3-di-oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience 157:309–318

    Article  PubMed  CAS  Google Scholar 

  38. Tamada Y, Nakajima E, Nakajima T, Shearer TR, Azuma M (2005) Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia. Brain Res 1050:148–155

    Article  PubMed  CAS  Google Scholar 

  39. Dutta S, Chiu YC, Probert AW, Wang KK (2002) Selective release of calpain produced alphalI-spectrin (alpha-fodrin) breakdown products by acute neuronal cell death. Biol Chem 383:785–791

    Article  PubMed  CAS  Google Scholar 

  40. Wang KK, Nath R, Raser KJ, Hajimohammadreza I (1996) Maitotoxin induces calpain activation in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Arch Biochem Biophys 331:208–214

    Article  PubMed  CAS  Google Scholar 

  41. McGinnis KM, Wang KK, Gnegy ME (1999) Alterations of extracellular calcium elicit selective modes of cell death and protease activation in SH-SY5Y human neuroblastoma cells. J Neurochem 72:1853–1863

    Article  PubMed  CAS  Google Scholar 

  42. Nath R, Scott M, Nadimpalli R, Gupta R, Wang KK (2000) Activation of apoptosis-linked caspase(s) in NMDA-injured brains in neonatal rats. Neurochem Int 36:119–126

    Article  PubMed  CAS  Google Scholar 

  43. Fukiage C, Azuma M, Nakamura Y, Tamada Y, Nakamura M, Shearer TR (1997) SJA6017, a newly synthesized peptide aldehyde inhibitor of calpain: amelioration of cataract in cultured rat lenses. Biochim Biophys Acta 1361:304–312

    PubMed  CAS  Google Scholar 

  44. Kupina NC, Nath R, Bernath EE et al (2001) The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J Neurotrauma 18:1229–1240

    Article  PubMed  CAS  Google Scholar 

  45. Zhang Z, Ottens AK, Larner SF et al (2006) Direct Rho-associated kinase inhibiton induces cofilin dephosphorylation and neurite outgrowth in PC-12 cells. Cell Mol Biol Lett 11:12–29

    Article  PubMed  CAS  Google Scholar 

  46. Nath R, Davis M, Probert AW et al (2000) Processing of cdk5 activator p35 to its truncated form (p25) by calpain in acutely injured neuronal cells. Biochem Biophys Res Commun 274:16–21

    Article  PubMed  CAS  Google Scholar 

  47. Wang KK, Posmantur R, Nath R et al (1998) Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497

    Article  PubMed  CAS  Google Scholar 

  48. Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, Hayes RL (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. Neuroreport 9:2437–2442

    Article  PubMed  CAS  Google Scholar 

  49. Schilling WP, Sinkins WG, Estacion M (1999) Maitotoxin activates a nonselective cation channel and a P2Z/P2X(7)-like cytolytic pore in human skin fibroblasts. Am J Physiol 277:C755–C765

    PubMed  CAS  Google Scholar 

  50. Schilling WP, Wasylyna T, Dubyak GR, Humphreys BD, Sinkins WG (1999) Maitotoxin and P2Z/P2X(7) purinergic receptor stimulation activate a common cytolytic pore. Am J Physiol 277:C766–C776

    PubMed  CAS  Google Scholar 

  51. Meucci O, Grimaldi M, Scorziello A et al (1992) Maitotoxin-induced intracellular calcium rise in PC12 cells: involvement of dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels and phosphoinositide breakdown. J Neurochem 59:679–688

    Article  PubMed  CAS  Google Scholar 

  52. Soergel DG, Yasumoto T, Daly JW, Gusovsky F (1992) Maitotoxin effects are blocked by SK&F 96365, an inhibitor of receptor-mediated calcium entry. Mol Pharmacol 41:487–493

    PubMed  CAS  Google Scholar 

  53. Kim YJ, An JM, Shin DM, Lee SI, Sugiya H, Seo JT (2002) Staurosporine mobilizes Ca(2+) from secretory granules by inhibiting protein kinase C in rat submandibular acinar cells. J Dent Res 81:788–793

    Article  PubMed  CAS  Google Scholar 

  54. Koh JY, Wie MB, Gwag BJ et al (1995) Staurosporine-induced neuronal apoptosis. Exp Neurol 135:153–159

    Article  PubMed  CAS  Google Scholar 

  55. Short DM, Heron ID, Birse-Archbold JL, Kerr LE, Sharkey J, McCulloch J (2007) Apoptosis induced by staurosporine alters chaperone and endoplasmic reticulum proteins: Identification by quantitative proteomics. Proteomics 7:3085–3096

    Article  PubMed  CAS  Google Scholar 

  56. Deshmukh M, Johnson EM Jr (2000) Staurosporine-induced neuronal death: multiple mechanisms and methodological implications. Cell Death Differ 7:250–261

    Article  PubMed  CAS  Google Scholar 

  57. Zhang XD, Gillespie SK, Hersey P (2004) Staurosporine induces apoptosis of melanoma by both caspase-dependent and -independent apoptotic pathways. Mol Cancer Ther 3:187–197

    PubMed  CAS  Google Scholar 

  58. Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R (2003) Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278:14162–14167

    Article  PubMed  CAS  Google Scholar 

  59. Seo SR, Seo JT (2009) Calcium overload is essential for the acceleration of staurosporine-induced cell death following neuronal differentiation in PC12 cells. Exp Mol Med 41:269–276

    Article  PubMed  CAS  Google Scholar 

  60. Wang Y, Zhang B, Peng X, Perpetua M, Harbrecht BG (2008) Bcl-xL prevents staurosporine-induced hepatocyte apoptosis by restoring protein kinase B/mitogen-activated protein kinase activity and mitochondria integrity. J Cell Physiol 215:676–683

    Article  PubMed  CAS  Google Scholar 

  61. Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB (2002) Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 99:9830–9835

    Article  PubMed  CAS  Google Scholar 

  62. Blomgren K, Zhu C, Wang X et al (2001) Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia–ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 276:10191–10198

    Article  PubMed  CAS  Google Scholar 

  63. Serper A, Calt S, Dogan AL, Guc D, Ozcelik B, Kuraner T (2001) Comparison of the cytotoxic effects and smear layer removing capacity of oxidative potential water, NaOCl and EDTA. J Oral Sci 43:233–238

    PubMed  CAS  Google Scholar 

  64. Chiesa R, Angeretti N, Del Bo R, Lucca E, Munna E, Forloni G (1998) Extracellular calcium deprivation in astrocytes: regulation of mRNA expression and apoptosis. J Neurochem 70:1474–1483

    Article  PubMed  CAS  Google Scholar 

  65. Sakabe I, Paul S, Dansithong W, Shinozawa T (1998) Induction of apoptosis in Neuro-2A cells by Zn2+ chelating. Cell Struct Funct 23:95–99

    Article  PubMed  CAS  Google Scholar 

  66. Abud HE, Heath JK (2004) Detecting apoptosis during the formation of polarized intestinal epithelium in organ culture. Cell Death Differ 11:788–789

    Article  PubMed  CAS  Google Scholar 

  67. Rotter B, Kroviarski Y, Nicolas G, Dhermy D, Lecomte MC (2004) AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding. Biochem J 378:161–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Meghan O’Donoghue for her technical assistance. This work was supported by the Department of Defense grant DAMMED-03-1-0066, National Institutes of Health grants R01 NS049175-01-A1 and R01 NS051431. K.K.W. Wang and R.L. Hayes own stock of Banyan Biomarkers Inc., and may benefit financially as a result of the outcome of this research or the work reported in this publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqun Zhang or Kevin K. W. Wang.

Additional information

Zhiqun Zhang and Stephen F. Larner contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Larner, S.F., Liu, M.C. et al. Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14, 1289–1298 (2009). https://doi.org/10.1007/s10495-009-0405-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0405-z

Keywords

Navigation