Skip to main content
Log in

A Universal Delivery System for Percutaneous Heart Valve Implantation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Transcatheter heart valve implantation is an emerging technology and an alternative to surgical valve replacement. Most existing systems consist of valves sewn into balloon-expandable stents with a delivery catheter functioning with the specific valve only. The aim of this study was to develop a universally applicable delivery system (DS) for plane stents, valves sewn into both balloon-expandable and self-expandable stents and feasible for use with different access routes. A DS was designed and manufactured in five different diameters. The requirements were derived from the implants, the implantation technique and the cardiovascular geometry of the experimental sheep. The combination of a self-expandable Nitinol stent and a jugular access point represented the major challenge as both flexibility and rigidity of the DS were required. To fulfill these contradicting mechanical properties the sheaths were comprised of a soft outer polymer tube with a stainless steel coiled spring inside. Tissue-engineered and pericardial pulmonary valves were implanted. Also polymeric and balloon-expandable stents were delivered to various positions in the vascular system. The initial success rate was 70.5%. After refinement of the DS, a success rate of 83.3% was achieved with the remaining failed implantations resulting from inadequate sizes of the prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CT:

Computed tomography

DS:

Delivery system

IC:

Inner catheter

ID:

Inner diameter

OC:

Outer catheter

OD:

Outer diameter

PA:

Pulmonary artery

PV:

Pulmonary valve

TAVI:

Transcatheter aortic valve implantation

TEHV:

Tissue engineered pulmonary heart valve

TPVI:

Transcatheter pulmonary valve implantation

HDPE:

High-density polyethylene

PU:

Polyurethane

References

  1. Ali, M., S. Kumar, K. Bjornstad, and C. Duran. The sheep as an animal model for heart valve research. Cardiovasc. Surg. 4(95):543–549, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Attmann, T. Jahnke, R. Quaden, A. Boening, S. Muller-Hulsbeck, J. Cremer, and G. Lutter. Advances in experimental percutaneous pulmonary valve replacement. Ann. Thorac. Surg. 80(3):969–975, 2005.

    Article  PubMed  Google Scholar 

  3. Attmann, T., G. Lutter, R. Quaden, T. Jahnke, K. Rumberg, J. Cremer, and S. Muller-Hulsbeck. Percutaneous valve replacement: significance of different delivery systems in vitro and in vivo. Cardiovasc. Intervent. Radiol. 29(3):406–412, 2006.

    Article  PubMed  Google Scholar 

  4. Binder, R. K., J. Rodés-Cabau, D. A. Wood, M. Mok, J. Leipsic, R. De Larochellière, S. Toggweiler, E. Dumont, M. Freeman, A. B. Willson, and J. G. Webb. Transcatheter aortic valve replacement with the SAPIEN 3: a new balloon-expandable transcatheter heart valve. JACC Cardiovasc. Interv. 6(3):293–300, 2013.

    Article  PubMed  Google Scholar 

  5. Bonhoeffer, P., Y. Boudjemline, Z. Saliba, A. O. Hausse, Y. Aggoun, D. Bonnet, D. Sidi, and J. Kachaner. Transcatheter implantation of a bovine valve in pulmonary position: a lamb study. Circulation 102(7):813–816, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Bonhoeffer, P., Y. Boudjemline, Z. Saliba, J. Merckx, Y. Aggoun, D. Bonnet, P. Acar, J. Le Bidois, D. Sidi, and J. Kachaner. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356(9239):1403–1405, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Cao, Q.-L., D. Kenny, D. Zhou, W. Pan, L. Guan, J. Ge, and Z. M. Hijazi. Early clinical experience with a novel self-expanding percutaneous stent-valve in the native right ventricular outflow tract. Catheter. Cardiovasc. Interv. 84(7):1131–1137, 2014.

    Article  PubMed  Google Scholar 

  8. Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106(24):3006–3008, 2002.

    Article  PubMed  Google Scholar 

  9. Dijkman, P. E., A. Driessen-Mol, L. Frese, S. P. Hoerstrup, and F. P. T. Baaijens. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 33(18):4545–4554, 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Haas, N. A., A. Moysich, U. Neudorf, H. Mortezaeian, M. Abdel-Wahab, H. Schneider, D. De Wolf, J. Petit, S. Narayanswami, K. T. Laser, and E. Sandica. Percutaneous implantation of the Edwards SAPIEN(™) pulmonic valve: initial results in the first 22 patients. Clin. Res. Cardiol. 102(2):119–128, 2013.

    Article  PubMed  Google Scholar 

  11. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer. Functional living trileaflet heart valves grown in vitro. Circulation 102(Supplement 3):III–44–III–49, 2000.

    Article  Google Scholar 

  12. Lapp, H., and I. Krakau. Das Herzkatheterbuch: Diagnostische und Interventionelle Kathetertechniken (2nd ed.). Stuttgart: Thieme, 2004.

    Google Scholar 

  13. Lutter, G., D. Kuklinski, G. Berg, P. Von Samson, J. Martin, M. Handke, P. Uhrmeister, and F. Beyersdorf. Percutaneous aortic valve replacement: an experimental study. I. Studies on implantation. J. Thorac. Cardiovasc. Surg. 123(4):768–776, 2002.

    Article  PubMed  Google Scholar 

  14. McElhinney, D. B., and J. T. Hennesen. The Melody® valve and Ensemble® delivery system for transcatheter pulmonary valve replacement. Ann. N. Y. Acad. Sci. 1291:77–85, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, M. Rissanen, T. Deichmann, B. Odermatt, B. Weber, M. Y. Emmert, G. Zund, F. P. T. Baaijens, and S. P. Hoerstrup. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56(6):510–520, 2010.

    Article  PubMed  Google Scholar 

  16. Standard DIN EN 13868:2002-11 Catheters. Test Methods for Kinking of Single Lumen Catheters and Medical Tubing. Brussels: CEN European Committee for Standardization, 2002.

  17. Willson, A. B., J. G. Webb, M. Freeman, D. A. Wood, R. Gurvitch, C. R. Thompson, R. R. Moss, S. Toggweiler, R. K. Binder, B. Munt, A. Cheung, C. Hague, J. Ye, and J. A. Leipsic. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J. Cardiovasc. Comput. Tomogr. 6(6):406–414, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our veterinarians Kerstin Brakmann, Fabienne Ferrara and Angela Körner; Antonia Prudlo for her work in our group and Anne Gale for editorial assistance; the Lifevalve group for the good collaboration, discussions and suggestions, especially Frank Thiel, Christian Baumeister and Thilo Wack from pfm medical AG for discussions about catheters; Marco Mueller, Lutz Rautenberg and Christian Wyrwich from the Institute of Polymertechnik und Polymerphysik, TU Berlin for help with the buckling tests; Linda Maher, Cassie Strauss, Eamonn Stenson, Barry Mulligan and Jonnie Goodwin from VistaMed Ltd and Ger Mullane and Eamonn Barrett from SHANNON COILED SPRINGS LIMITED for the good cooperation. The work was funded by the European Union’s Seventh Framework Programme (FP7/2007‐2013) under Grant Agreement Number 242008 (LifeValve).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bartosch.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartosch, M., Peters, H., Spriestersbach, H. et al. A Universal Delivery System for Percutaneous Heart Valve Implantation. Ann Biomed Eng 44, 2683–2694 (2016). https://doi.org/10.1007/s10439-016-1561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1561-2

Keywords

Navigation