Skip to main content

Advertisement

Log in

Validation of an Anatomical Coordinate System for Clinical Evaluation of the Knee Joint in Upright and Closed MRI

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A computerized method to automatically and spatially align joint axes of in vivo knee scans was established and compared to a fixed reference system implanted in a cadaver model. These computational methods to generate geometric models from static MRI images with an automatic coordinate system fitting proved consistent and accurate to reproduce joint motion in multiple scan positions. Two MRI platforms, upright and closed, were used to scan a phantom cadaver knee to create a three-dimensional, geometric model. The knee was subsequently scanned in several positions of knee bending in a custom made fixture. Reference markers fixed to the bone were tracked by an external infrared camera system as well as by direct segmentation from scanned images. Anatomical coordinate systems were automatically fitted to the segmented bone model and the transformations of joint position were compared to the reference marker coordinate systems. The tracked translation and rotation measurements of the automatic coordinate system were found to be below root mean square errors of 0.8 mm and 0.7°. In conclusion, the precision of the translation and rotational tracking is found to be sensitive to the scanning modality, albeit in upright or closed MRI, but still within comparative measures to previously performed studies. The potential to use segmented bone models for patient joint analysis could vastly improve clinical evaluation of disorders of the knee with continual application in future three-dimensional computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderst, W., R. Zauel, J. Bishop, E. Demps, and S. Tashman. Validation of three-dimensional model-based tibio-femoral tracking during running. Med. Eng. Phys. 31:10–16, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Behnam, A. J., D. A. Herzka, and F. T. Sheehan. Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. J. Biomech. 44(1):193–197, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Blankevoort, L., R. Huiskes, and A. de Lange. Helical axes of passive knee joint motions. J. Biomech. 23(12):1219–1229, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Borotikar, B. S., W. H. Sipprell, III, E. E. Wible, and F. T. Sheehan. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data. J. Biomech. 45(6):1117–1122, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Closkey, R. F., and R. E. Windsor. Alterations in the patella after a high tibial or distal femoral osteotomy. Clin. Orthop. Relat. Res. 389:51–56, 2001.

    Article  PubMed  Google Scholar 

  6. Della, C. U., V. Camomilla, A. Leardini, and A. Cappozzo. Femoral anatomical frame: assessment of various definitions. Med. Eng. Phys. 25(5):425–431, 2003.

    Article  Google Scholar 

  7. Draper, C. E., T. F. Besier, J. M. Santos, F. Jennings, M. Fredericson, G. E. Gold, G. S. Beaupre, and S. L. Delp. Using real-time MRI to quantify altered joint kinematics in subjects with patellofemoral pain and to evaluate the effects of a patellar brace or sleeve on joint motion. J. Orthop. Res. 27(5):571–577, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Eckhoff, D. G., T. F. Dwyer, J. M. Bach, V. M. Spitzer, and K. D. Reinig. Three-dimensional morphology of the distal part of the femur viewed in virtual reality. J. Bone Joint Surg. Am. 83-A Suppl 2(Pt 1):43–50, 2001.

    PubMed  CAS  Google Scholar 

  9. Ehrig, R. M., W. R. Taylor, G. N. Duda, and M. O. Heller. A survey of formal methods for determining functional joint axes. J. Biomech. 40(10):2150–2157, 2007.

    Article  PubMed  Google Scholar 

  10. Elfring, R., M. de la Fuente, and K. Radermacher. Assessment of optical localizer accuracy for computer aided surgery systems. Comput. Aided Surg. 15(1–3):1–12, 2010.

    Article  PubMed  Google Scholar 

  11. Fellows, R. A., N. A. Hill, H. S. Gill, N. J. MacIntyre, M. M. Harrison, R. E. Ellis, and D. R. Wilson. Magnetic resonance imaging for in vivo assessment of three-dimensional patellar tracking. J. Biomech. 38(8):1643–1652, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Friese, K. I., P. Blanke, and F. E. Wolter. Yadiv—an open platform for 3D visualization and 3D segmentation of medical data. Vis. Comput. 27:129–139, 2011.

    Article  Google Scholar 

  13. Gold, G. E., and C. F. Beaulieu. Future of MR imaging of articular cartilage. Semin. Musculoskelet. Radiol. 5(4):313–327, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105(2):136–144, 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Katchburian, M. V., A. M. Bull, Y. F. Shih, F. W. Heatley, and A. A. Amis. Measurement of patellar tracking: assessment and analysis of the literature. Clin. Orthop. Relat. Res. 412:241–259, 2003.

    Article  PubMed  Google Scholar 

  16. Laprade, J., and E. Culham. Radiographic measures in subjects who are asymptomatic and subjects with patellofemoral pain syndrome. Clin. Orthop. Relat. Res. 414:172–182, 2003.

    Article  PubMed  Google Scholar 

  17. Leardini, A., L. Chiari, C. U. Della, and A. Cappozzo. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225, 2005.

    Article  PubMed  Google Scholar 

  18. Lenz, N. M., A. Mane, L. P. Maletsky, and N. A. Morton. The effects of femoral fixed body coordinate system definition on knee kinematic description. J. Biomech. Eng. 130(2):021014, 2008.

    Article  PubMed  Google Scholar 

  19. Liodakis, E., M. Kenawey, I. Doxastaki, C. Krettek, C. Haasper, and S. Hankemeier. Upright MRI measurement of mechanical axis and frontal plane alignment as a new technique: a comparative study with weight bearing full length radiographs. Skeletal Radiol. 40(7):885–889, 2011.

    Article  PubMed  Google Scholar 

  20. MacIntyre, N. J., N. A. Hill, R. A. Fellows, R. E. Ellis, and D. R. Wilson. Patellofemoral joint kinematics in individuals with and without patellofemoral pain syndrome. J. Bone Joint Surg. Am. 88(12):2596–2605, 2006.

    Article  PubMed  CAS  Google Scholar 

  21. MacIntyre, N. J., E. K. McKnight, A. Day, and D. R. Wilson. Consistency of patellar spin, tilt and lateral translation side-to-side and over a 1 year period in healthy young males. J. Biomech. 41(14):3094–3096, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Manal, K., I. McClay, J. Richards, B. Galinat, and S. Stanhope. Knee moment profiles during walking: errors due to soft tissue movement of the shank and the influence of the reference coordinate system. Gait Posture 15(1):10–17, 2002.

    Article  PubMed  CAS  Google Scholar 

  23. Nha, K. W., R. Papannagari, T. J. Gill, S. K. Van de Velde, A. A. Freiberg, H. E. Rubash, and G. Li. In vivo patellar tracking: clinical motions and patellofemoral indices. J. Orthop. Res. 26(8):1067–1074, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Patel, V. V., K. Hall, M. Ries, C. Lindsey, E. Ozhinsky, Y. Lu, and S. Majumdar. Magnetic resonance imaging of patellofemoral kinematics with weight-bearing. J. Bone Joint Surg. Am. 85-A(12):2419–2424, 2003.

    PubMed  Google Scholar 

  25. Patel, V. V., K. Hall, M. Ries, J. Lotz, E. Ozhinsky, C. Lindsey, Y. Lu, and S. Majumdar. A three-dimensional MRI analysis of knee kinematics. J. Orthop. Res. 22(2):283–292, 2004.

    Article  PubMed  Google Scholar 

  26. Scarvell, J. M., P. N. Smith, K. M. Refshauge, H. R. Galloway, and K. R. Woods. Evaluation of a method to map tibiofemoral contact points in the normal knee using MRI. J. Orthop. Res. 22(4):788–793, 2004.

    Article  PubMed  Google Scholar 

  27. Shakarji, C. M. Least-squares fitting algorithms of the NIST algorithm testing system. J. Res. Nat. Inst. Stand. Technol. 103:633–641, 1998.

    Article  Google Scholar 

  28. Sheehan, F. T., A. Derasari, T. J. Brindle, and K. E. Alter. Understanding patellofemoral pain with maltracking in the presence of joint laxity: complete 3D in vivo patellofemoral and tibiofemoral kinematics. J. Orthop. Res. 27(5):561–570, 2009.

    Article  PubMed  Google Scholar 

  29. Shellock, F. G., M. Mullin, K. R. Stone, M. Coleman, and J. V. Crues. Kinematic magnetic resonance imaging of the effect of bracing on patellar position: qualitative assessment using an extremity magnetic resonance system. J. Athl. Train. 35(1):44–49, 2000.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Shin, C. S., R. D. Carpenter, S. Majumdar, and C. B. Ma. Three-dimensional in vivo patellofemoral kinematics and contact area of anterior cruciate ligament-deficient and -reconstructed subjects using magnetic resonance imaging. Arthroscopy 25(11):1214–1223, 2009.

    Article  PubMed  Google Scholar 

  31. Spoor, C. W., and F. E. Veldpaus. Rigid body motion calculated from spatial co-ordinates of markers. J. Biomech. 13(4):391–393, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. van Kampen, A., and R. Huiskes. The three-dimensional tracking pattern of the human patella. J. Orthop. Res. 8(3):372–382, 1990.

    Article  PubMed  Google Scholar 

  33. von Eisenhart-Rothe, R., M. Siebert, C. Bringmann, T. Vogl, K. H. Englmeier, and H. Graichen. A new in vivo technique for determination of 3D kinematics and contact areas of the patellofemoral and tibiofemoral joint. J. Biomech. 37(6):927–934, 2004.

    Article  Google Scholar 

  34. Ward, S. R., M. R. Terk, and C. M. Powers. Patella alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J. Bone Joint Surg. Am. 89(8):1749–1755, 2007.

    Article  PubMed  Google Scholar 

  35. Wilson, N. A., J. M. Press, J. L. Koh, R. W. Hendrix, and L. Q. Zhang. In vivo noninvasive evaluation of abnormal patellar tracking during squatting in patients with patellofemoral pain. J. Bone Joint Surg. Am. 91(3):558–566, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Yamada, Y., Y. Toritsuka, S. Horibe, K. Sugamoto, H. Yoshikawa, and K. Shino. In vivo movement analysis of the patella using a three-dimensional computer model. J. Bone Joint Surg. Br. 89(6):752–760, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Orthopaedic Department of the Hannover Medical School and no outside grant funds were procured. A special thanks is given to Dr. Med. Thorsten Schulze for providing scanning time at the Upright Radiology Center. Also a thank you to Mr. Breyvogel at the Hannover Medical School workshop for constructing and improving the specimen holding device.

Conflict of interest

There authors confirm that there are no known financial relations that would pose a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Olender.

Additional information

Associate Editor Scott I Simon oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olender, G., Hurschler, C., Fleischer, B. et al. Validation of an Anatomical Coordinate System for Clinical Evaluation of the Knee Joint in Upright and Closed MRI. Ann Biomed Eng 42, 1133–1142 (2014). https://doi.org/10.1007/s10439-014-0980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-0980-1

Keywords

Navigation