Skip to main content

Advertisement

Log in

Influence of Meniscectomy and Meniscus Replacement on the Stress Distribution in Human Knee Joint

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Studying the mechanics of the knee joint has direct implications in understanding the state of human health and disease and can aid in treatment of injuries. In this work, we developed an axisymmetric model of the human knee joint using finite element method, which consisted of separate parts representing tibia, meniscus and femoral, and tibial articular cartilages. The articular cartilages were modeled as three separate layers with different material characteristics: top superficial layer, middle layer, and calcified layer. The biphasic characteristic of both meniscus and cartilage layers were included in the computational model. The developed model was employed to investigate several aspects of mechanical response of the knee joint under external loading associated with the standing posture. Specifically, we studied the role of the material characteristic of the articular cartilage and meniscus on the distribution of the shear stresses in the healthy knee joint and the knee joint after meniscectomy. We further employed the proposed computational model to study the mechanics of the knee joint with an artificial meniscus. Our calculations suggested an optimal elastic modulus of about 110 MPa for the artificial meniscus which was modeled as a linear isotropic material. The suggested optimum stiffness of the artificial meniscus corresponds to the stiffness of the physiological meniscus in the circumferential direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adam C., F. Eckstein, S. Milz, E. Schulte, C. Becker, R. Putz. The distribution of cartilage thickness in the knee-joints of old-aged individuals – measurement by A-mode ultrasound. Clin. Biomech. 13:1–10, 1998. doi:10.1016/S0268-0033(97)85881-0

    Article  Google Scholar 

  2. Adams S. B. Jr, M. A. Randolph, T. J. Gill. Tissue engineering for meniscus repair. J. Knee Surg. 18:25–30, 2005

    PubMed  Google Scholar 

  3. Askew M. J., V. C. Mow. The biomechanical function of the collagen fibril ultrastructure of articular cartilage. J. Biomech. Eng. 100:105–115, 1978

    Google Scholar 

  4. Ateshian G. A., L. J. Soslowsky, V. C. Mow. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J. Biomech. Eng. 24:761–776, 1991. doi:10.1016/0021-9290(91)90340-S

    Article  CAS  Google Scholar 

  5. Atkinson T. S., R. C. Haut, N. J. Altiero. Impact-induced fissuring of articular cartilage: an investigation of failure criteria. J. Biomech. Eng. 120:181–187, 1998. doi:10.1115/1.2798300

    Article  PubMed  CAS  Google Scholar 

  6. Aufderheide A. C., K. A. Athanasiou. Mechanical stimulation toward tissue engineering of the knee meniscus. Ann. Biomed. Eng. 32:1161–1174, 2004. doi:10.1114/B:ABME.0000036652.31658.f3

    Article  PubMed  Google Scholar 

  7. Baratz M. E., F. H. Fu, R. Mengato. Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee. Am. J. Sports Med. 14:270–274, 1986. doi:10.1177/036354658601400405

    Article  PubMed  CAS  Google Scholar 

  8. Barber F. A., R. G. Stone. Meniscal repair: an arthroscopic technique. J. Bone Joint Surg. 67-B:39–41, 1985

    Google Scholar 

  9. Barink M., A. van Kampen, M. de Waal Malefijt, and N. Verdonschot. A three-dimensional dynamic finite element model of the prosthetic knee joint: simulation of joint laxity and kinematics. In: Proceedings of the Institute of Mechanical Engineers H., vol. 219, 2005, pp. 415–424. doi:10.1243/095441105X34437

  10. Buma P., N. N. Ramrattan, T. G. van Tienen, R. P. Veth. Tissue engineering of the meniscus. Biomaterials 25:1523–1532, 2004. doi:10.1016/S0142-9612(03)00499-X

    Article  PubMed  CAS  Google Scholar 

  11. Caruntu D. I., M. S. Hefzy. 3-D anatomically based dynamic modeling of the human knee to include tibio-demoral and patello-femoral joints. J. Biomech. Eng. 126:44–53, 2004. doi:10.1115/1.1644565

    Article  PubMed  Google Scholar 

  12. Chern K. Y., W. B. Zhu, V. C. Mow. Anisotropic viscoelastic shear properties of meniscus. Adv. Bioeng. 15:105–106, 1989

    Google Scholar 

  13. Chiari C., U. Koller, R. Dorotka, C. Eder, R. Plasenzotti, S. Lang, L. Ambrosio, E. Tognana, E. Kon, D. Salter, S. Nehrer. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthr. Cartil. 14:1056–1065, 2006. doi:10.1016/j.joca.2006.04.007

    Article  PubMed  CAS  Google Scholar 

  14. Cohen B., R. D. Gardner, and G. A. Ateshian. The influence of transverse isotropy on cartilage indentation behavior – a study of the human humeral head. In: Proc. Orthop. Res. Soc., vol. 18, Orthopaedic Research Society, 1993, p. 185. http://www.ors.org/web/Transactions.asp

  15. Cohen Z. A., D. M. McCarthy, S. D. Kwak, P. Legrand, F. Fogarasi, E. J. Ciaccio, G. A. Ateshian. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthr. Cartil. 7:95–109, 1999. doi:10.1053/joca.1998.0165

    Article  PubMed  CAS  Google Scholar 

  16. Dehaven K. E., K. P. Black, H. J. Griffiths. Open meniscus repair: technique and two to nine year results. Am. J. Sports Med. 17:788–795, 1989. doi:10.1177/036354658901700612

    Article  PubMed  CAS  Google Scholar 

  17. Donahue T. L., M. L. Hull, M. M. Rashid, C. R. Jacobs. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124:273–280, 2002. doi:10.1115/1.1470171

    Article  PubMed  Google Scholar 

  18. Donzelli P. S., R. L. Spilker. A finite element investigation of solid phase transverse isotropy in contacting biphasic cartilage layers. Adv. Bioeng. 33:349–350, 1996

    Google Scholar 

  19. Eberhardt A. W., L. M. Keer, J. L. Lewis, V. Vithoontien. An analytical model of joint contact. J. Biomech. Eng. 33:407–413, 1990. doi:10.1115/1.2891204

    Article  Google Scholar 

  20. Eberhardt A. W., J. L. Lewis, L. M. Keer. Contact of layered elastic spheres as a model of joint contact: effect of tangential load and friction. J. Biomech. Eng. 113:107–108, 1991. doi:10.1115/1.2894076

    Article  PubMed  CAS  Google Scholar 

  21. Eckstein F., M. Winzheimer, J. Hohe, K. H. Englmeier, M. Reiser. Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthr. Cartil. 9:101–111, 2001. doi:10.1053/joca.2000.0365

    Article  PubMed  CAS  Google Scholar 

  22. Englund M. Meniscal tear – a feature of osteoarthritis. Acta Orthop. Scand. Suppl. 75:1–45, 2004. doi:10.1080/03008820410002048

    Article  PubMed  Google Scholar 

  23. Fernandez J. W., P. J. Hunter. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech. Model. Mech. 4:20–39, 2005. doi:10.1007/s10237-005-0072-0

    Article  CAS  Google Scholar 

  24. Fithian, D. C., W. B. Zhu, A. Ratcliffe, M. Kelly, and V. C. Mow. Exponential law representation of tensile properties of human meniscus. In: Proceedings of the Institute of Mechanical Engineers Bioeng., Professional Engineering Publishing, 1989, pp. 85–90. http://www.pepublishing.com/

  25. Garcia J. J., N. J. Altiero, R. C. Haut. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J. Biomech. Eng. 120:608–613, 1998. doi:10.1115/1.2834751

    Article  PubMed  CAS  Google Scholar 

  26. Griffin T. M., F. Guilak. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 33:195–200, 2005. doi:10.1097/00003677-200510000-00008

    Article  PubMed  Google Scholar 

  27. Guccione A. A, D. T. Felson, J. J. Anderson, J. M. Anthony. The effects of specific medical conditions on the functional limitations of elders in the Framingham study. J. Public Health 84:351–358, 1994

    Article  CAS  Google Scholar 

  28. Guilak F., B. Fermor, F. J. Keefe, V. B. Kraus, S. A. Olson, D. S. Pisetsky, L. A. Setton, J. B. Weinberg. The role of biomechanics and inflammation in cartilage injury and repair. Clin. Orthop. Relat. Res. 423:17–26, 2004. doi:10.1097/01.blo.0000131233.83640.91

    Article  PubMed  Google Scholar 

  29. Heijkants R. G., R. V. van Calck, J. H. De Groot, A. J. Pennings, A. J. Schouten, T. G. van Tienen, N. Ramrattan, P. Buma, R. P. Veth. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J. Mater. Sci. Mater. Med. 15:423–427, 2004. doi:10.1023/B:JMSM.0000021114.39595.1e

    Article  PubMed  CAS  Google Scholar 

  30. Ihn J. C., M. W. Ahn, D. M. Kim. Photoelastic analysis of stress distribution on the tibiofemoral joint after meniscectomy. Orthopedics 15:1445–50, 1992

    PubMed  CAS  Google Scholar 

  31. Kelly, P. A., and J. J. O’Connor. Transmission of rapidly applied loads through articular cartilage Part 1: uncracked cartilage. In: Proceedings of the Institute of Mechanical Engineers, vol. 210, Professional Engineering Publishing, 1996, pp. 27–37. doi:10.1243/PIME_PROC_1996_210_388_02. http://www.pepublishing.com/

  32. Kelly D. J., P. J. Prendergast. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J. Biomech. 38:1413–1422, 2005. doi:10.1016/j.jbiomech.2004.06.026

    Article  PubMed  CAS  Google Scholar 

  33. Kobayashi M. A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomed. Mater. Eng. 14:505–515, 2004

    PubMed  Google Scholar 

  34. Kobayashi M., Y. S. Chang, M. Oka. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 26:3243–3248, 2005. doi:10.1016/j.biomaterials.2004.08.028

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi M., J. Toguchida, M. Oka. Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 24:639–647, 2003. doi:10.1016/S0142-9612(02)00378-2

    Article  PubMed  CAS  Google Scholar 

  36. Korkala O., E. Karaharju, M. Gronblad, K. Aalto. Articular cartilage after meniscectomy: rabbit knees studied with the scanning electron microscope. Acta Orthop. Scand. 55:273–277, 1984

    PubMed  CAS  Google Scholar 

  37. Lanzer W. L., G. Komenda. Changes in articular cartilage after meniscectomy. Clin. Orthop. 252:41–48, 1990

    PubMed  Google Scholar 

  38. Li G., J. Gil, A. Kanamori, S. L. Woo. A validated three-dimensional computational model of a human knee joint. J. Biomech. Eng. 12:657–662, 1999. doi:10.1115/1.2800871

    Article  Google Scholar 

  39. Li G., O. Lopez, H. Rubash. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J. Biomech. Eng. 123:341–346, 2001. doi:10.1115/1.1385841

    Article  PubMed  CAS  Google Scholar 

  40. MacConaill M. A. The movements of bones and joints: the synovial fluid and its assistants. J. Bone Joint Surg. 32-B:244–252, 1950

    CAS  Google Scholar 

  41. McDermott I. D., A. A. Amis. The consequence of meniscectomy. J. Bone Joint Surg. 88-B:1549–1556, 2006. doi:10.1302/0301-620X.88B12.18140

    Article  Google Scholar 

  42. Mente P. L., J. L. Lewis. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J. Orthop. Res. 12:637–647, 1994. doi:10.1002/jor.1100120506

    Article  PubMed  CAS  Google Scholar 

  43. Mow V. C., W. Zhu, A. Ratcliffe. Structure and function of articular cartilage and meniscus. in: Basic Orthopedic Biomechanics. Eds: V. C. Mow, W. C. Hayes. Raven Press, New York, 1991

    Google Scholar 

  44. Muensterer O. J., F. Eckstein, D. Hahn, R. Putz. Computer aided three dimensional assessment of knee-joint cartilage with magnetic resonance imaging. Clin. Biomech. 11:260–266, 1996. doi:10.1016/0268-0033(95)00069-0

    Article  Google Scholar 

  45. Nambu S. N., G. Lewis. Influences of the temporal nature of the applied load and the tibial baseplate material on the stress distribution in a three-dimensional model of the human knee joint containing a prosthetic replacement. Biomed. Mater. Eng. 14:203–217, 2004

    PubMed  Google Scholar 

  46. Oegema, T. R., Jr., R. J. Carpenter, F. Hofmeister, and R. C. Thompson Jr. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc. Res. Tech. 37:324–332, 1993. doi:10.1002/(SICI)1097-0029(19970515)37:4<324::AID-JEMT7>3.0.CO;2-K

    Google Scholar 

  47. Owen J. R., J. S. Wayne. Influence of a superficial tangential zone over repairing cartilage defects: implications for tissue engineering. Biomech. Model. Mechanobiol. 5:102–110, 2006. doi:10.1007/s10237-006-0022-5

    Article  PubMed  CAS  Google Scholar 

  48. Peña, E., B. Calvo, M. A. Martínez, D. Palanca, and M. Doblaré. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin. Biomech. 20:498–507, 2005

    Google Scholar 

  49. Pena E., B. Calvo, D. A. Martinez, D. Palanca, M. Doblaré. Why lateral meniscectomy is more dangerous than medical meniscectomy. A finite element study. J. Orthop. Res. 24:1001–1010, 2006. doi:10.1002/jor.20037

    Article  PubMed  Google Scholar 

  50. Penrose J. M., G. M. Holt, M. Beaugonin, D. R. Hose. Development of an accurate three-dimensional finite element knee model. Comput. Methods Biomech. Biomed. Engin. 5:291–300, 2002. doi:10.1080/1025584021000009724

    Article  PubMed  CAS  Google Scholar 

  51. Renstrom P., R. J. Johnson. Anatomy and biomechanics of the menisci. Clin. Sports Med. 9:523–538, 1990

    PubMed  CAS  Google Scholar 

  52. Rispoli D. M., M. D. Miller. Options in meniscal repair. Clin. Sports Med. 18:77–91, 1999. doi:10.1016/S0278-5919(05)70131-9

    Article  PubMed  CAS  Google Scholar 

  53. Stammen J. A., S. Williams, D. N. Ku, R. E. Guldberg. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22:799–806, 2001. doi:10.1016/S0142-9612(00)00242-8

    Article  PubMed  CAS  Google Scholar 

  54. Steadman J. R., W. G. Rodkey. Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy 21:515–525, 2005. doi:10.1016/j.arthro.2005.01.006

    Article  PubMed  Google Scholar 

  55. Sweigart M. A., K. A. Athanasiou. Towards tissue engineering of the knee meniscus. Tissue Eng. 7:111–129, 2001. doi:10.1089/107632701300062697

    Article  PubMed  CAS  Google Scholar 

  56. Tienen T. G., R. G. Heijkants, J. H. de Groot, A. J. Pennings, A. J. Schouten, R. P. Veth, P. Buma. Replacement of the knee meniscus by a porous polymer implant. Am. J. Sports Med. 34:64–71, 2006. doi:10.1177/0363546505280905

    Article  PubMed  Google Scholar 

  57. Tienen T. G., R. G. Heijkants, J. H. de Groot, A. J. Schouten, A. J. Pennings, R. P. Veth, P. Buma. Meniscal replacement in dogs. Tissue regeneration in two different materials with similar properties. J. Biomed. Mater. Res. B. Appl. Biomater. 76:389–396, 2006. doi:10.1002/jbm.b.30406

    PubMed  CAS  Google Scholar 

  58. Whipple R. R., C. R. Wirth, V. C. Mow. Anisotropic and zonal variations in the tensile properties of the meniscus. Trans. Orthop. Res. Soc. 10:367, 1985

    Google Scholar 

  59. Wilson W., C. van Burken, C. van Donkelaar, P. Buma, R. van Rietbergen, H. Rik. Causes of mechanically induced collagen damage in articular cartilage. J. Orthop. Res. 24:220–228, 2006. doi:10.1002/jor.20027

    Article  PubMed  Google Scholar 

  60. Wilson W., C. van Donkelaar, R. van Rietbergen, R. Huiskes. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med. Eng. Phys. 27:810–826, 2005. doi:10.1016/j.medengphy.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  61. Wilson W. C., B. V. Rietbergen, C. C. V. Donkelaar, R. Huiskes. Pathways of load induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. J. Biomech. 63:845–851, 2003. doi:10.1016/S0021-9290(03)00004-6

    Article  Google Scholar 

  62. Yao, J., A. D. Salo, M. B. McInnis, and L. A. Lerner. Finite element modeling of the knee joint contact pressures and compression to magnetic resonance imaging of the loaded knee. In: Proceedings of the Institute of Mechanical Engineers Cong. Exp., American Society of Mechanical Engineering, 2003

  63. Zimmy M. L., D. J. Albright, E. Dabezies. Mechanoreceptors in the human medial meniscus. Acta Anat. 133:35–40, 1988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Vaziri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaziri, A., Nayeb-Hashemi, H., Singh, A. et al. Influence of Meniscectomy and Meniscus Replacement on the Stress Distribution in Human Knee Joint. Ann Biomed Eng 36, 1335–1344 (2008). https://doi.org/10.1007/s10439-008-9515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9515-y

Keywords

Navigation