Skip to main content

Advertisement

Log in

Imaging of a retinal pigment epithelium aperture using polarization-sensitive optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate cases with a retinal pigment epithelium (RPE) aperture using polarization-sensitive optical coherence tomography (PS-OCT).

Study design

Retrospective consecutive case series.

Methods

A retrospective study that included three eyes (three patients) with RPE aperture and age-related macular degeneration (AMD) evaluated at the Macular Clinic in Tokyo University Hospital. A three-dimensional dataset of depolarization information was obtained with a clinical prototype of PS-OCT.

Results

All patients were categorized as intermediate AMD. RPE apertures were identified with PS-OCT as discontinuities of depolarization in the RPE layer of the pigment epithelial detachment (PED). A nonuniform decrease of depolarization in the RPE layer was also observed around the aperture. Two findings were observed above the aperture, intraretinal focal areas with high reflectivity and increased depolarization and subretinal bands with moderate reflectivity and low depolarization. Retinal sensitivity according to fundus microperimetry measured at 25 points was significantly associated with the degree of depolarization at the corresponding area (r-square = 0.60, p = 0.0001).

Conclusion

The RPE aperture was characterized as a round discontinuity of depolarization. The findings with PS-OCT suggest atrophic changes in the overlying RPE of the PED. The degree of depolarization was associated with retinal sensitivity. The current results indicate that RPE apertures developed within the spectrum of atrophic AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Querques G, Capuano V, Costanzo E, Corvi F, Querques L, Introini U, et al. Retinal pigment epithelium aperture: a previously unreported finding in the evolution of avascular pigment epithelium detachment. Retina. 2016;36:S65-72.

    Article  Google Scholar 

  2. Molina-Pallete R, Andreu-Fenoll M, Gallego-Pinazo R, Dolz-Marco R. Atypical healing in a case with retinal pigment epithelium apertures. Retin Cases Brief Rep. 2018. https://doi.org/10.1097/icb.0000000000000789.

    Article  PubMed  Google Scholar 

  3. Zayit-Soudry S, Moroz I, Loewenstein A. Retinal pigment epithelial detachment. Surv Ophthalmol. 2007;52:227–43.

    Article  Google Scholar 

  4. Balaratnasingam C, Yannuzzi LA, Curcio CA, Morgan WH, Querques G, Capuano V, et al. Associations between retinal pigment epithelium and drusen volume changes during the lifecycle of large drusenoid pigment epithelial detachments. Invest Ophthalmol Vis Sci. 2016;57:5479–89.

    Article  Google Scholar 

  5. Cukras C, Agrón E, Klein ML, Ferris FL, Chew EY, Gensler G, et al. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: age-related eye disease study Report No. 28. Ophthalmology. 2010;117:489–99.

    Article  Google Scholar 

  6. Mrejen S, Sarraf D, Mukkamala S, Freund K. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013;33:1735–62.

    Article  Google Scholar 

  7. Sarks JP, Sarks SH, Killingsworth MC. Evolution of geographic atrophy of the retinal pigment epithelium. Eye. 1988;2:552–77.

    Article  Google Scholar 

  8. Balaratnasingam C, Messinger JD, Sloan KR, Yannuzzi LA, Freund KB, Curcio CA. Histologic and optical coherence tomographic correlates in drusenoid pigment epithelium detachment in age-related macular degeneration. Ophthalmology. 2017;124:644–56.

    Article  Google Scholar 

  9. Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci. 2006;47:3556–64.

    Article  Google Scholar 

  10. Hashimoto Y, Inoue T, Ono T, Lee J, Tsuneyoshi S, Fujita A, et al. A novel method for the objective identification of hyperautofluorescent ring in retinitis pigmentosa using binarization processing. Transl Vis Sci Technol. 2019;8:20.

    Article  Google Scholar 

  11. Hee MR, Huang D, Swanson EA, Fujimoto JG. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. JOSA B. 1992;9:903–8.

    Article  Google Scholar 

  12. de Boer JF, Milner TE, van Gemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22:934–6.

    Article  Google Scholar 

  13. Pircher M, Hitzenberger CK, Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res. 2011;30:431–51.

    Article  Google Scholar 

  14. Pircher M, Götzinger E, Leitgeb R, Sattmann H, Findl O, Hitzenberger CK. Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt Express. 2004;12:5940–51.

    Article  Google Scholar 

  15. Pircher M, Götzinger E, Findl O, Michels S, Geitzenauer W, Leydolt C, et al. Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2006;47:5487–94.

    Article  Google Scholar 

  16. Miura M, Yamanari M, Iwasaki T, Elsner AE, Makita S, Yatagai T, et al. Imaging polarimetry in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49:2661–7.

    Article  Google Scholar 

  17. Baumann B, Götzinger E, Pircher M, Hitzenberger CK. Measurements of depolarization distribution in the healthy human macula by polarization sensitive OCT. J Biophotonics. 2009;2:426–34.

    Article  Google Scholar 

  18. Baumann B, Baumann SO, Konegger T, Pircher M, Götzinger E, Schlanitz F, et al. Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization. Biomed Opt Express. 2012;3:1670–83.

    Article  CAS  Google Scholar 

  19. Baumann B, Schirmer J, Rauscher S, Fialová S, Glösmann M, Augustin M, et al. Melanin pigmentation in rat eyes: in vivo imaging by polarization-sensitive optical coherence tomography and comparison to histology. Investig Opthalmol Vis Sci. 2015;56:7462.

    Article  Google Scholar 

  20. Schütze C, Wedl M, Baumann B, Pircher M, Hitzenberger CK, Schmidt-Erfurth U. Progression of retinal pigment epithelial atrophy in antiangiogenic therapy of neovascular age-related macular degeneration. Am J Ophthalmol. 2015;159:1100–14.

    Article  Google Scholar 

  21. Igarashi N, Matsuura M, Hashimoto Y, Hirasawa K, Murata H, Inoue T, et al. Assessing visual fields in patients with retinitis pigmentosa using a novel microperimeter with eye tracking: the MP-3. PLoS ONE. 2016;11:e0166666.

    Article  Google Scholar 

  22. Yamanari M, Uematsu S, Ishihara K, Ikuno Y. Parallel detection of Jones-matrix elements in polarization-sensitive optical coherence tomography. Biomed Opt Express. 2019;10:2318–36.

    Article  Google Scholar 

  23. Yamanari M, Tsuda S, Kokubun T, Shiga Y, Omodaka K, Aizawa N, et al. Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography. Biomed Opt Express. 2016;7:3551–73.

    Article  Google Scholar 

  24. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  Google Scholar 

  25. Ferris FL, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120:844–51.

    Article  Google Scholar 

  26. Giannakaki-Zimmermann H, Querques G, Munch IC, Shroff D, Sarraf D, Chen X, et al. Atypical retinal pigment epithelial defects with retained photoreceptor layers: a so far disregarded finding in age related macular degeneration. BMC Ophthalmol. 2017;17:67.

    Article  Google Scholar 

  27. Bansal R, Yangzes S, Singh R, Katoch D, Dogra MR, Gupta V, et al. Retinal pigment epithelium aperture: A late-onset complication in adult-onset foveomacular vitelliform dystrophy. Indian J Ophthalmol. 2018;66:83.

    Article  Google Scholar 

  28. Iovino C, Chhablani J, Parameswarappa DC, Pellegrini M, Giannaccare G, Peiretti E. Retinal pigment epithelium apertures as a late complication of longstanding serous pigment epithelium detachments in chronic central serous chorioretinopathy. Eye. 2019;33:1871–6.

    Article  Google Scholar 

  29. Shiraki K, Kohno T, Ataka S, Abe K, Inoue K, Miki T. Thinning and small holes at an impending tear of a retinal pigment epithelial detachment. Graefes Arch Clin Exp Ophthalmol. 2001;239:430–6.

    Article  CAS  Google Scholar 

  30. Notani S, Mori R, Yuzawa M, Kawamura A. Retinal pigment epithelial detachment associated with retinal pigment epithelium thinning revealed by optical coherence tomography. Jpn J Ophthalmol. 2015;59:305–11.

    Article  Google Scholar 

  31. Miura M, Makita S, Azuma S, Yasuno Y, Ueda S, Sugiyama S, et al. Evaluation of focal damage in the retinal pigment epithelium layer in serous retinal pigment epithelium detachment. Sci Rep. 2019;9:3278.

    Article  Google Scholar 

  32. Schlanitz FG, Baumann B, Spalek T, Schütze C, Ahlers C, Pircher M, et al. Performance of automated drusen detection by polarization-sensitive optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4571–9.

    Article  Google Scholar 

  33. Roquet W, Roudot-Thoraval F, Coscas G, Soubrane G. Clinical features of drusenoid pigment epithelial detachment in age related macular degeneration. Br J Ophthalmol. 2004;88:638–42.

    Article  CAS  Google Scholar 

  34. Christenbury JG, Folgar FA, O’Connell RV, Chiu SJ, Farsiu S, Toth CA. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology. 2013;120:1038–45.

    Article  Google Scholar 

  35. Miura M, Makita S, Sugiyama S, Hong Y-J, Yasuno Y, Elsner AE, et al. Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging. Sci Rep. 2017;7:1–12.

    Article  Google Scholar 

  36. Chen KC, Jung JJ, Curcio CA, Balaratnasingam C, Gallego-Pinazo R, Dolz-Marco R, et al. Intraretinal hyperreflective foci in acquired vitelliform lesions of the macula: clinical and histologic study. Am J Ophthalmol. 2016;164:89–98.

    Article  Google Scholar 

  37. Schlanitz FG, Sacu S, Baumann B, Bolz M, Platzer M, Pircher M, et al. Identification of drusen characteristics in age-related macular degeneration by polarization-sensitive optical coherence tomography. Am J Ophthalmol. 2015;160:335–44.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by AMED under Grant Number JP19he1302011. N. Aoki, Grant (Japan Agency for Medical Research and Development); M. Yamanari, Grant (Japan Agency for Medical Research and Development); S. Sugiyama, Grant (Japan Agency for Medical Research and Development); S. Kato, Grant (Japan Agency for Medical Research and Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Obata.

Ethics declarations

R. Obata, None; A. Yoshinaga, None; M. Yamamoto, None; K. Komatsu, None; N. Aoki, Employee (TOMEY); M. Yamanari, Employee (TOMEY); S. Sugiyama, Employee (TOMEY); T. Minami, None; K. Azuma, None; T. Inoue, None; M. Aihara, None; S. Kato, None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Author: Ryo Obata

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obata, R., Yoshinaga, A., Yamamoto, M. et al. Imaging of a retinal pigment epithelium aperture using polarization-sensitive optical coherence tomography. Jpn J Ophthalmol 65, 30–41 (2021). https://doi.org/10.1007/s10384-020-00787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-020-00787-4

Keywords

Navigation