Skip to main content

Advertisement

Log in

Measurement repeatability of the dynamic Scheimpflug analyzer

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the repeatability of corneal deformation parameters measured using a dynamic Scheimpflug analyzer and the impact of baseline clinical factors on the repeatability of each parameter.

Study design

Retrospective, cross-sectional study.

Methods

Forty-eight eyes (48 healthy subjects; mean age, 49.0 ± 19.5 years) underwent repeated examinations with the Scheimpflug analyzer to evaluate the test–retest variability. The intraclass correlation coefficient (ICC) and repeatability coefficient as indicators of variability were computed for 35 parameters measured with the Scheimpflug analyzer. The associations between the magnitude of the test–retest variability and baseline factors, such as age, axial length (AL), intraocular pressure (IOP), and central corneal thickness (CCT), were analyzed.

Results

The test–retest repeatability was excellent for 22 (62.9%) of 35 parameters (ICC ≥ 0.75), good for seven (20%), (ICC ≥ 0.6), fair for four (11.4%), (ICC ≥ 0.4), and poor for two (5.7%) parameters (ICC < 0.4). Age was associated positively with the magnitude of variability in 13 (37.1%) parameters; measurement variability was affected significantly by AL (5 parameters, 14.3%) and CCT (7 parameters, 20%) but, except for one parameter not by IOP.

Conclusion

Most parameters of the dynamic Scheimpflug analyzer showed favorable measurement reliability in healthy subjects. However, six parameters showed poor-to-fair repeatability. Age, AL, and CCT significantly affected the repeatability of several parameters. These results should be considered when clinicians use this device in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31:146–55.

    Article  PubMed  Google Scholar 

  2. Dupps WJ. Hysteresis: new mechanospeak for the ophthalmologist. J Cataract Refract Surg. 2007;33:1499–501.

    Article  PubMed  Google Scholar 

  3. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KCY, Sachdev N. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci. 2008;49:3262–8.

    Article  PubMed  Google Scholar 

  4. Abitbol O, Bouden J, Doan S, Hoang-Xuan T, Gatinel D. Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol. 2010;88:116–9.

    Article  PubMed  Google Scholar 

  5. Grise-Dula A, Saa A, Abitbol O, Febbrano J-L, Azan E, Moulin-Tyrode C, et al. Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J Glaucoma. 2012;21:486–9.

    Article  Google Scholar 

  6. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–62.

    Article  PubMed  Google Scholar 

  7. Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vision Res. 2008;48:2167–71.

    Article  PubMed  Google Scholar 

  8. Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, et al. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye. 2011;25:1083–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefe’s Arch Clin Exp Ophthalmol. 2008;246:735–8.

    Article  Google Scholar 

  10. Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J. Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefe’s Arch Clin Exp Ophthalmol. 2014;252:1329–35.

    Article  Google Scholar 

  11. Sun L, Shen M, Wang J, Fang A, Xu A, Fang H, et al. Recovery of corneal hysteresis after reduction of intraocular pressure in chronic primary angle-closure glaucoma. Am J Ophthalmol. 2009;147:1061–6, 1066.e1–2.

  12. Huseynova T, Waring GO, Roberts CJ, Krueger RR, Tomita M. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol. 2014;157:885–93.

    Article  PubMed  Google Scholar 

  13. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141:868–75.

    Article  PubMed  Google Scholar 

  14. De Moraes CG, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21:209–13.

    Article  PubMed  Google Scholar 

  15. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang T-M, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120:1533–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Song Y, Congdon N, Li L, Zhou Z, Choi K, Lam DSC, et al. Corneal hysteresis and axial length among Chinese secondary school children: the Xichang Pediatric Refractive Error Study (X-PRES) Report no. 4. Am J Ophthalmol. 2008;145:819–26.

    Article  PubMed  Google Scholar 

  17. Chang P-Y, Chang S-W, Wang J-Y. Assessment of corneal biomechanical properties and intraocular pressure with the Ocular Response Analyzer in childhood myopia. Br J Ophthalmol. 2010;94:877–81.

    Article  PubMed  Google Scholar 

  18. Lau W, Pye D. A clinical description of Ocular Response Analyzer measurements. Invest Ophthalmol Vis Sci. 2011;52:2911–6.

    Article  PubMed  Google Scholar 

  19. Leite MT, Alencar LM, Gore C, Weinreb RN, Sample PA, Zangwill LM, et al. Comparison of corneal biomechanical properties between healthy blacks and whites using the Ocular Response Analyzer. Am J Ophthalmol. 2010;150(163–8):e1.

    Google Scholar 

  20. Zhang C, Tatham AJ, Abe RY, Diniz-Filho A, Zangwill LM, Weinreb RN, et al. Corneal hysteresis and progressive retinal nerve fiber layer loss in glaucoma. Am J Ophthalmol. 2016;166:29–36.

    Article  PubMed  Google Scholar 

  21. Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49:3919–26.

    Article  PubMed  Google Scholar 

  22. Wang W, Du S, Zhang X. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci. 2015;56:5557–65.

    Article  PubMed  Google Scholar 

  23. Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal deformation parameters provided by the Corvis-ST pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24:568–74.

    Article  PubMed  Google Scholar 

  24. Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, et al. Corneal biomechanical characteristics measured by the Corvis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94:317–24.

    Article  Google Scholar 

  25. Lee R, Chang RT, Wong IYH, Lai JSM, Lee JWY, Singh K. Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma. 2016;25:e603–9.

    Article  PubMed  Google Scholar 

  26. Ye C, Yu M, Lai G, Jhanji V. Variability of corneal deformation responses in normal and keratoconic eyes. Optom Vis Sci. 2015;92:149–53.

    Article  Google Scholar 

  27. Perez-Rico C, Gutierrez-Ortiz C, Gonzalez-Mesa A, Zandueta AM, Moreno-Salgueiro A, Germain F. Effect of diabetes mellitus on Corvis ST measurement process. Acta Ophthalmol. 2014;93:193–8.

    Article  Google Scholar 

  28. Hassan Z, Modis L, Szalai E, Berta A, Nemeth G. Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery. Cont Lens Anterior Eye. 2014;37:337–41.

    Article  PubMed  Google Scholar 

  29. Shen Y, Zhao J, Yao P, Miao H, Niu L, Wang X, et al. Changes in corneal deformation parameters after lenticule creation and extraction during small incision lenticule extraction (SMILE) procedure. PLoS One. 2014;9:e103893.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maeda N, Ueki R, Fuchihata M, Fujimoto H, Koh S, Nishida K. Corneal biomechanical properties in 3 corneal transplantation techniques with a dynamic Scheimpflug analyzer. Jpn J Ophthalmol. 2014;58:483–9.

    Article  PubMed  Google Scholar 

  31. Ali NQ, Patel DV, McGhee CNJ. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact Scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55:3651–9.

    Article  PubMed  Google Scholar 

  32. Kling S, Marcos S. Contributing factors to corneal deformation in air puff measurements. Invest Ophthalmol Vis Sci. 2013;54:5078–85.

    Article  PubMed  Google Scholar 

  33. Leung CK-S, Ye C, Weinreb RN. An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest Ophthalmol Vis Sci. 2013;54:2885–92.

  34. Valbon BF, Ambrósio R, Fontes BM, Alves MR. Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol. 2013;76:229–32.

    Article  PubMed  Google Scholar 

  35. Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34:71–7.

    Article  PubMed  Google Scholar 

  36. Hon Y, Lam AKC. Corneal deformation measurement using Scheimpflug noncontact tonometry. Optom Vis Sci. 2013;90:e1–8.

    Article  PubMed  Google Scholar 

  37. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull. 1979;86:420–8.

    Article  CAS  PubMed  Google Scholar 

  38. Bland JM, Altman D. Measurement error. Br Med J. 1996;312:1654.

    Article  CAS  Google Scholar 

  39. Bland JM, Altman DG. Measurement error proportional to the mean. Br Med J. 1996;313:106.

    Article  CAS  Google Scholar 

  40. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6:284–90.

    Article  Google Scholar 

  41. Kim BJ, Ryu I-H, Kim SW. Age-related differences in corneal epithelial thickness measurements with anterior segment optical coherence tomography. Jpn J Ophthalmol. 2016;60:357–64.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Japanese Ministry of Education, Culture, Sports, Science and Technology.

Conflicts of interest

A. Miki, Consultant fees (NIDEK), Honoraria (Alcon, Kowa, Otsuka, Pfizer, Santen); N. Maeda, Grants (Topcon), Consultant fees (Alcon), Lecture fees (AMO, B + L, HOYA, Johnson & Johnson, Menicon, Otsuka, Pfizer, Santen, Senjyu, TOMEY); T. Asai, None; Y. Ikuno, Grants (TOMEY, Topcon), Consultant fees (Bayer, Novartis); K. Nishida, Grants (Alcon, AMO, Bayer, HOYA, Kowa, Menicon, MSD, Novartis, Otsuka, Pfizer, Rhoto, Santen, Senju, Topcon, Wakamoto), Lecture fees (Alcon, Bayer, Boehringer Ingelheim, Chuo Sangio, HOYA, Johnson & Johnson, Kowa, Novartis, Otsuka, Pfizer, Santen, SEED, Senju).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuya Miki.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miki, A., Maeda, N., Asai, T. et al. Measurement repeatability of the dynamic Scheimpflug analyzer. Jpn J Ophthalmol 61, 433–440 (2017). https://doi.org/10.1007/s10384-017-0534-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0534-9

Keywords

Navigation