Skip to main content
Log in

A hierarchical model of operational anticipation windows in driving an automobile

  • Letter to the Editor
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Driving an automobile is an example of a goal-directed activity with high complexity in which different behavioral elements have to be integrated and brought into a sequential order. On the basis of the reafference principle and experimental results on temporal perception and cognitive control, we propose a hierarchical model of driving behavior, which can also be adapted to other goal-directed activities. Driving is conceived of as being controlled by anticipatory neuronal programs; if these programs are disrupted by unpredictable stimuli, which require an instantaneous reaction, behavioral control returns after completion of the reactive mode to the anticipatory mode of driving. In the model different levels of anticipation windows are distinguished which, however, are interconnected, in a bi-directional way: (a) Strategic level with a representation of the driving activity from the beginning to reaching the final goal; (b) Segmented tactical level with the sequence of necessary milestones to reach the goal; (c) Maneuver level where actions like passing another car or keeping a lane are controlled; (d) Short-term integration level of a few seconds which allows immediate anticipations; and (e) Synchronization level for sensorimotor control and complexity reduction within neuronal assemblies. A flow diagram schematically describes different driving situations stressing the anticipatory mode of control. In a pilot experiment with 20 subjects using a virtual driving situation in a car simulator predictions of the model could be verified, i.e., subjects showed a significant preference for the anticipatory mode of driving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aschoff J (1965) Circadian rhythms in man. Science 148:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Pöppel E (2006) Two spatially separated attention systems in the visual field: evidence from inhibition of return. Cogn Process (in press)

  • Chen L (2005) The topological approach to perceptual organization. Vis Cogn 12:553–637

    Google Scholar 

  • Desmurget M, Grafton S (2003) Feedback or feedforward control. End of a dichotomy. In: Johnson-Frey SH (eds) Taking action. Cognitive neuroscience perspectives on intentional acts. MIT Press, Cambridge, MA, pp 289–338

    Google Scholar 

  • Dijksterhuis A, Bos MW, Nordgren LF, van Baaren RB (2006) On making the right choice: the deliberation-without-attention effect. Science 311:1005–1007

    Article  PubMed  CAS  Google Scholar 

  • Edelman GM, Tononi G (2000) A universe of consciousness. How matter becomes imagination. Basic Books, New York

    Google Scholar 

  • Frost D, Pöppel E (1976) Different programming modes of human saccadic eye movements as a function of stimulus eccentricity: indications of a functional subdivision of the visual field. Biol Cybern 23:39–48

    Article  PubMed  CAS  Google Scholar 

  • Glimcher PW (2003) Decisions, uncertainty, and the brain. The science of neuroeconomics. MIT Press, Cambridge, MA

    Google Scholar 

  • Goodale M, Milner D (2004) Sight unseen. An exploration of conscious and unconscious vision. Oxford University Press, Oxford

    Google Scholar 

  • Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 28:364–370

    Article  PubMed  CAS  Google Scholar 

  • Gross H-M, Heinze A, Seiler T, Stephan V (1999) Generative character of perception: a neural architecture for sensorimotor anticipation. Neural Netw 12:1101–1129

    Article  PubMed  Google Scholar 

  • Hawkins J (2004) On intelligence. Times Books, New York

    Google Scholar 

  • von Helmholtz H (1896) Handbuch der physiologischen Optik. 2. Auflage, Verlag von Leopold Voss, Hamburg und Leipzig

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Hotta Y, Tanida K (2005) A study of driving behavior when driver is feeling hurried and a potential method for their detection (in Japanese). Trans Soc Automot Eng Jpn 36(1):259–264

    Google Scholar 

  • Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 2325–2330

  • Johnson M (1987) The body in the mind. The bodily basis of meaning, imagination, and reason. The University of Chicago Press, Chicago

    Google Scholar 

  • Körner E, Gewaltig M-O, Körner U, Richter A, Rodemann T (1999) A model of computation in neocortical architecture. Neural Netw 12:989–1005

    Article  PubMed  Google Scholar 

  • Körner E, Tsujino H, Masutani T (1997) A cortical-type modular neural network for hypothetical reasoning. Neural Netw 10:791–814

    Article  Google Scholar 

  • Kojima Y (1995) Driving characteristics of novice and experienced drivers—Part 1: characteristics of visual search (in Japanese). Proc Soc Automot Eng Jpn 956:21–24

    Google Scholar 

  • Kraus N, Nicol T (2005) Brainstem origins for cortical what and where pathways in the auditory system. Trends Neurosci 28:176–181

    Article  PubMed  CAS  Google Scholar 

  • Lashley KS (1951) The problem of serial order in behaviour. In: Jeffress LA (eds) Cerebral mechanisms in behaviour. Wiley, New York, pp 112–136

    Google Scholar 

  • Lindner A, Thier P, Kircher TT, Haarmeier T, Leube DT (2005) Disorders of agency in schizophrenia correlate with an inability to compensate for the sensory consequences of actions. Curr Biol 15:1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Lorenz K (1943) Die angeborenen Formen möglicher Erfahrung. Z Tierpsychol 5:235–409

    Google Scholar 

  • Mach E (1885) Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen. Gustav Fischer, Jena

    Google Scholar 

  • Maravita A, Iriki A (2004) Tools for the body (Schema). Trends Cogn Sci 8:79–86

    Article  PubMed  Google Scholar 

  • Mates J, Radil T, Müller U, Pöppel E (1994) Temporal integration in sensorimotor synchronization. J Cogn Neurosci 6:332–340

    Article  Google Scholar 

  • Merker B (2005) The liabilities of mobility: a selection pressure for the transition to consciousness in animal evolution. Conscious Cogn 14:89–114

    Article  PubMed  Google Scholar 

  • Michon JA (1985) A critical review of driver behavior models: what do we know, what should we do? In: Evans LA, Schwing RC (eds) Human behavior and traffic safety. Plenum Press, New York, pp 487–524

    Google Scholar 

  • Miller GA, Galanter E, Pribram K (1960) Plans and the structure of behaviour. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Miyake Y, Onishi Y, Pöppel E (2004) Two types of anticipation in synchronisation tapping. Acta Neurobiol Exp 64:415–426

    Google Scholar 

  • Näätänen R, Summala H (1976) Road-user behavior and traffic accidents. North-Holland, Amsterdam

    Google Scholar 

  • Nagai M, Onda M, Miyamoto N, Kojima Y (1997) Driver characteristics in winding roads in mountains (in Japanese). Proc Soc Automot Eng Jpn 975:177–180

    Google Scholar 

  • Nagiri S, Doi S, Takei K, Mizuno M (1994) Experimental analysis of avoidance maneuver using driving simulator (in Japanese). Proc Soc Automot Eng Jpn 941:17–20

    Google Scholar 

  • Nauta WJH, Feirtag M (1986) Fundamental neuroanatomy. Freeman, New York

    Google Scholar 

  • Osaka N (2003) Working memory-based consciousness. An individual difference approach. In: Osaka N (eds) Neural basis of consciousness. John Benjamins Publishing Company, Amsterdam, pp 27–44

    Google Scholar 

  • Pfeifer R, Scheier C (1999) Understanding intelligence. The MIT Press, Cambridge, MA

    Google Scholar 

  • Poulet JFA, Hedwig B (2006) The cellular basis of corollary discharge. Science 311:518–522

    Article  PubMed  CAS  Google Scholar 

  • Podvigin NF, Bagaera TV, Boykova EV, Zargarov AA, Podvigina DN, Pöppel E (2004) Three bands of oscillatory activity in the lateral geniculate nucleus of the cat visual system. Neurosci Lett 361:83–85

    Article  PubMed  CAS  Google Scholar 

  • Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1:56–61

    Article  Google Scholar 

  • Pöppel E (2004) Lost in time: a historical frame, elementary processing units and the 3-second window. Acta Neurobiol Exp 64:295–301

    Google Scholar 

  • Pöppel E (2006) Der Rahmen. Ein Blick des Gehirns auf unser Ich. Hanser-Verlag, München

    Google Scholar 

  • Pöppel E, Harvey LO Jr (1973) Light-difference threshold and subjective brightness in the periphery of the visual field. Psychol Forsch 36:145–161

    Article  PubMed  Google Scholar 

  • Roenneberg T, Merrow M (2005) Circadian clocks—the fall and rise of physiology. Nat Rev 6:965–971

    Article  CAS  Google Scholar 

  • Schill K, Umkehrer E, Beinlich S, Krieger G, Zetzsche C (2001) Scene analysis with saccadic eye movements: top-down and bottom-up modelling. J Electron Imaging 10:152–160

    Article  Google Scholar 

  • Sommer MA, Wurtz RH (2004) The dialogue between cerebral cortex and superior colliculus: implications for saccadic target selection and corollary discharge. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, MA, pp 1466–1484

    Google Scholar 

  • Sperry R W (1950) Neural basis of spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

    Article  PubMed  CAS  Google Scholar 

  • Strasburger H, Harvey LO Jr, Rentschler I (1991) Contrast thresholds for identification of numeric characters in direct and eccentric view. Percept Psychophys 49:495–508

    PubMed  CAS  Google Scholar 

  • Summala H (1985) Modeling driver behavior: a pessimistic prediction? In: Evans L, Schwing RC (eds) Human behavior and traffic safety. Plenum Publishing Corporation, New York, pp 43–65

    Google Scholar 

  • Summala H(1996) Accident risk and driver behaviour. Saf Sci 22:103–117

    Article  Google Scholar 

  • Summala H (2000) Top-down and bottom-up processes in driver behavior at roundabouts and crossroads. Transport Hum Factors 2:29–37

    Article  Google Scholar 

  • Tanaka S, Ueno S, Takeuchi S (1993) An examination of visibility in night driving (in Japanese). J Traffic Sci Soc Osaka 22:15–22

    Google Scholar 

  • Tanida K (2000) Reducing the effects of driving fatigue with the adoption of a lane following assistance system. Soc Automot Eng Jpn Rev 21:258–260

    Google Scholar 

  • Tanida K (2001) Attempt to identify panic in terms of heart rate acceleration response during braking (in Japanese). Jpn J Ergon 37:159–168

    Google Scholar 

  • Teuber H-L (1960) Perception. In: Field J, Magain HW, Hall VE (eds) Handbook of physiology III. American Physiol Soc, Washington, pp 1595–1668

    Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, London

    Google Scholar 

  • Ungerleider LG, Pasternak T (2004) Ventral and dorsal cortical processing streams. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, MA, pp 541–562

    Google Scholar 

  • Uno H, Hiramatsu K (1999) Relationship between time margin and driver’s steering avoidance in an emergent situation (in Japanese). Jpn J Ergon 35:219–227

    Google Scholar 

  • Wilde GJS (1988) Risk homeostasis theory and traffic accidents. Propositions, deductions and discussion of recent commentaries. Ergonomics 31:441–468

    Google Scholar 

  • Wittmann M, Kiss M, Gugg P, Steffen A, Fink M, Pöppel E, Kamiya H (2006) Effects of display position of a visual in-vehicle task on simulated driving. App Ergon 37:187–199

    Article  Google Scholar 

  • Zakay D, Block RA (1997) Temporal cognition. Curr Dir Psychol Sci 6:12–16

    Article  Google Scholar 

  • Zeki SM (1978) Functional specialization in the visual cortex of the rhesus monkey. Nature 274:423–428

    Article  PubMed  CAS  Google Scholar 

  • Zihl J, von Cramon D, Mai N (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:313–340

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors highly appreciate the support by Dr. Jan Churan and Dipl.-Psych. Wolfgang Grundler who under the supervision of the second author performed the experiments on cognitive embedding in simulated driving; financial support for these experiments was provided by the “High-Tech-Offensive” of Bavaria/Germany to the “Generation Research Program” in Bad Tölz. The authors appreciate Mr. Akihiro Kubo’s and Mr. Yasuhisa Maekawa’s continuous support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tanida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanida, K., Pöppel, E. A hierarchical model of operational anticipation windows in driving an automobile. Cogn Process 7, 275–287 (2006). https://doi.org/10.1007/s10339-006-0152-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-006-0152-9

Keywords

Navigation