Skip to main content
Log in

Method for Adapting the Grayscale Standard Display Function to the Aging Eye

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Perceptual linearity of grayscale images based on a contrast sensitivity model is a widely recognized and used standard for medical imaging visualization. This approach ensures consistency across devices and provides perception of luminance variations in direct relationship to changes in image values. We analyze the effect of aging of the human eye on the precept of linearity and demonstrate that not only the number of just-noticeable differences diminishes for older subjects but also linearity across the range of luminance values is significantly affected. While loss of JNDs is inevitable for a fixed luminance range, our findings suggest possible corrective approaches for maintaining linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux J-L, Chen W: Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging 33(12):2271–2292, 2014

    Article  PubMed  Google Scholar 

  2. Amiot C, Girard C, Chanussot J, Pescatore J, Desvignes M: Curvelet based contrast enhancement in fluoroscopic sequences. IEEE Trans Med Imaging 34(1):137–147, 2015

    Article  CAS  PubMed  Google Scholar 

  3. Hamarneh G, McIntosh C, Drew MS: Perception-based visualization of manifold-valued medical images using distance-preserving dimensionality reduction. IEEE Trans Med Imaging 30(7):1314–1327, 2011

    Article  PubMed  Google Scholar 

  4. Depeursinge A, Kurtz C, Beaulieu C, Napel S, Ru-bin D: Predicting visual semantic descriptive terms from radiological image data: preliminary results with liver lesions in CT. IEEE Trans Med Imaging 33(8):1669–1676, 2014

    Article  PubMed  PubMed Central  Google Scholar 

  5. Digital Imaging and Communications in Medicine (DICOM): DICOM standard 2014a. Part 14: Grayscale standard display function, 2014

  6. Barten PGJ: Physical model for the contrast sensitivity of the human eye. pages 57–72, 1992

  7. Barten PGJ: Contrast sensitivity of the human eye and its effects on image quality. 72, 1999

  8. Barten PGJ: Formula for the contrast sensitivity of the human eye. pages 231–238, 2003

  9. Leong DL, Rainford L, Haygood TM, Whitman GJ, Tchou PM, Geiser WR, Carkaci S, Brennan PC: Verification of DICOM GSDF in complex backgrounds. J Digit Imaging 25(5):662–669, 2012

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park S, Badano A, Gallas BD, Myers KJ: Incorporating human contrast sensitivity in model observers for detection tasks. IEEE Trans Med Imaging 28(3):339–347, 2009

    Article  PubMed  Google Scholar 

  11. Johnson JP, Krupinski E, Yan M, Roehrig H, Graham AR, Weinstein RS, et al: Using a visual discrimination model for the detection of compression artifacts in virtual pathology images. IEEE Trans Med Imaging 30(2):306–314, 2011

    Article  PubMed  Google Scholar 

  12. Wunderlich A, Noo F, Gallas BD, Heilbrun ME: Exact confidence intervals for channelized hotelling observer performance in image quality studies. IEEE Trans Med Imaging 34(2):453–464, 2015

    Article  PubMed  Google Scholar 

  13. Association of American Medical Colleges: 2012 physician specialty data book, center for workforce studies, 2012

  14. De Groot SG, Gebhard JW: Pupil size as determined by adapting luminance. JOSA 42(7):492–495, 1952

    Article  Google Scholar 

  15. Watson AB, Yellott JI: A unified formula for light-adapted pupil size. J Vis 12(10):12, 2012

    Article  PubMed  Google Scholar 

  16. Stanley PA, Davies AK: The effect of field of view size on steady-state pupil diameter. Ophthalmic Physiol Opt 15(6):601–603, 1995

    Article  CAS  PubMed  Google Scholar 

  17. Owsley C: Aging and vision. Vis Res 51(13):1610–1622, 2011

    Article  PubMed  Google Scholar 

  18. Ferrer-Blasco T, González-Méijome JM, Montés-Micó R: Age-related changes in the human visual system and prevalence of refractive conditions in patients attending an eye clinic. J Cataract Refract Surg 34(3):424–432, 2008

    Article  PubMed  Google Scholar 

  19. Visual Functions Committee International Council of Ophthalmology: Visual acuity measurement standard at ICO 1984, 1984

  20. Jackson AJ, Bailey IL: Visual acuity. Optom Pract 5(2):53–70, 2004

    Google Scholar 

  21. Woods RL, Tregear SJ, Mitchell RA: Screening for ophthalmic disease in older subjects using visual acuity and contrast sensitivity. Ophthalmology 105(12):2318–2326, 1998

    Article  CAS  PubMed  Google Scholar 

  22. Clark CL, Hardy JL, Volbrecht VJ, Werner JS: Scotopic spatiotemporal sensitivity differences between young and old adults. Ophthalmic Physiol Opt 30(4):339–350, 2010

    Article  PubMed  PubMed Central  Google Scholar 

  23. Haegerstrom-Portnoy G, Schneck ME, Brabyn JA: Seeing into old age: vision function beyond acuity. Optom Vis Sci 76(3):141–158, 1999

    Article  CAS  PubMed  Google Scholar 

  24. Sia DI, Martin S, Wittert G, Casson RJ: Age related change in contrast sensitivity among Australian male adults: Florey Adult Male Ageing Study. Acta Ophthalmol 91(4):312–317, 2013

    Article  PubMed  Google Scholar 

  25. Nomura H, Ando F, Niino N, Shimokata H, Miyake Y: Age related change in contrast sensitivity among Japanese adults. Jpn J Ophthalmol 47(3):299–303, 2003

    Article  PubMed  Google Scholar 

  26. Pomerance GN, Evans DW: Test-retest reliability of the CSV-1000 contrast test and its relationship to glaucoma therapy. Invest Ophthalmol Vis Sci 35(9):3357–3361, 1994

    CAS  PubMed  Google Scholar 

  27. Winn B, Whitaker D, Elliott DB, Phillips NJ: Factors affecting light-adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci 35(3):1132–1137, 1994

    CAS  PubMed  Google Scholar 

  28. Marcos S, et al: Are changes in ocular aberrations with age a significant problem for refractive surgery? J Refract Surg 18(5):572–578, 2002

    Google Scholar 

  29. Berrio E, Tabernero J, Artal P: Optical aberrations and alignment of the eye with age. J Vis 10(14):34, 2010

    Article  PubMed  Google Scholar 

  30. Goodwin EP and Wyant JC: Field guide to interferometric optical testing, 2006

  31. Chylack LT, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu S-Y: The lens opacities classification system III. Arch Ophthalmol 111(6):831–836, 1993

    Article  PubMed  Google Scholar 

  32. Lin T-J, Peng C-H, Chiou S-H, Liu J-H, Tsai C-Y, Chuang J-H, Chen S-J, et al: Severity of lens opacity, age, and correlation of the level of silent information regulator T1 expression in age-related cataract. J Cataract Refract Surg 37(7):1270–1274, 2011

    Article  PubMed  Google Scholar 

  33. Richter GM, Choudhury F, Torres M, Azen SP, Varma R, Los Angeles Latino Eye Study Group, et al: Risk factors for incident cortical, nuclear, posterior subcapsular, and mixed lens opacities: the Los Angeles Latino EYE Study. Ophthalmology 119(10):2040–2047, 2012

    Article  PubMed  PubMed Central  Google Scholar 

  34. Michael R, Bron AJ: The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc B Biol Sci 366(1568):1278–1292, 2011

    Article  CAS  Google Scholar 

  35. Pierscionek BK, Weale RA: The optics of the eye-lens and lenticular senescence. Doc Ophthalmol 89(4):321–335, 1995

    Article  CAS  PubMed  Google Scholar 

  36. Weale RA: Age and the transmittance of the human crystalline lens. J Physiol 395:577, 1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pokorny J, Smith VC, Lutze M: Aging of the human lens. Appl Opt 26(8):1437–1440, 1987

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, Pokorny J, Smith VC: Optical density of the human lens. JOSA A 14(5):953–960, 1997

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank P. Leon, MD at the Ophthalmological University Clinic of Trieste, who kindly provided optical aberration data, and M. Choi, Ph. D. student at the University of Maryland, for help with the reader study. The authors declare that they have no competing financial interests. The mention of commercial products herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services. This is a contribution of the Food and Drug Administration and is not subject to copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Badano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramponi, G., Badano, A. Method for Adapting the Grayscale Standard Display Function to the Aging Eye. J Digit Imaging 30, 17–25 (2017). https://doi.org/10.1007/s10278-016-9900-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-016-9900-2

Keywords

Navigation