Skip to main content
Log in

The proliferation and tenogenic differentiation potential of bone marrow-derived mesenchymal stromal cell are influenced by specific uniaxial cyclic tensile loading conditions

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

It has been previously demonstrated that mechanical stimuli are important for multipotent human bone marrow-derived mesenchymal stromal cells (hMSCs) to maintain good tissue homeostasis and even to enhance tissue repair processes. In tendons, this is achieved by promoting the cellular proliferation and tenogenic expression/differentiation. The present study was conducted to determine the optimal loading conditions needed to achieve the best proliferation rates and tenogenic differentiation potential. The effects of mechanical uniaxial stretching using different rates and strains were performed on hMSCs cultured in vitro. hMSCs were subjected to cyclical uniaxial stretching of 4, 8 or 12 % strain at 0.5 or 1 Hz for 6, 24, 48 or 72 h. Cell proliferation was analyzed using alamarBlue\(^\circledR \) assay, while hMSCs differentiation was analyzed using total collagen assay and specific tenogenic gene expression markers (type I collagen, type III collagen, decorin, tenascin-C, scleraxis and tenomodulin). Our results demonstrate that the highest cell proliferation is observed when 4 % strain \(+\) 1 Hz was applied. However, at 8 % strain \(+\) 1 Hz loading, collagen production and the tenogenic gene expression were highest. Increasing strain or rates thereafter did not demonstrate any significant increase in both cell proliferation and tenogenic differentiation. In conclusion, our results suggest that 4 % \(+\) 1 Hz cyclic uniaxial loading increases cell proliferation, but higher strains are required for superior tenogenic expressions. This study suggests that selected loading regimes will stimulate tenogenesis of hMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

  • Awad HA, Butler DL, Boivin GP, Smith FNL, Malaviya P, Huibregtse B, Caplan AI (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 3:267–277. doi:10.1089/ten.1999.5.267

    Article  Google Scholar 

  • Boo L, Selvaratnam L, Tai CC, Ahmad TS, Kamarul T (2011) Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. J Mater Sci Mater Med 22:1343–1356. doi:10.1007/s10856-011-4294-7

    Article  Google Scholar 

  • Brodsky B, Baum J (2008) Structural biology: modelling collagen diseases. Nature 453:998–999. doi:10.1038/453998a

    Article  Google Scholar 

  • Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14. doi:10.1016/S0021-9290(99)00177-3

    Article  Google Scholar 

  • Calderwood DA, Shattil SJ, Ginsberg MH (2000) Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem 275:22607–22610. doi:10.1074/jbc.R900037199

    Article  Google Scholar 

  • Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH (2008) Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res 49:7–14. doi:10.1080/03008200701818561

    Article  Google Scholar 

  • Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, Park JK (2007) Effects of mechanical stimulation on the proliferation of bone marrow-derived human mesenchymal stem cells. Biotechnol Bioprocess Eng 12:601–609. doi:10.1007/BF02931075

    Article  Google Scholar 

  • Chong AK, Ang AD, Goh JC, Hui JH, Lim AY, Lee EH, Lim BH (2007) Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit Achilles tendon model. J Bone Joint Surg Am 89:74–81. doi:10.1177/0363546510395485

    Article  Google Scholar 

  • Clause KC, Liu LJ, Tobita K (2010) Directed stem cell differentiation: the role of physical forces. Cell Commun Adhes 17:48–54. doi:10.3109/15419061.2010.492535

    Article  Google Scholar 

  • D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122. doi:10.1359/jbmr.1999.14.7.1115

    Article  Google Scholar 

  • Dalby MJ, Gadegaard N, Oreffo RO (2014) Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat Mater 13:558–569. doi:10.1038/nmat3980

    Article  Google Scholar 

  • Delaine-Smith RM, Reilly GC (2012) Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2:169–180

    Google Scholar 

  • Docheva D, Hunziker EB, Fässler R, Brandau O (2005) Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25:699–705. doi:10.1128/MCB.25.2.699-705.2005

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 4:315–317. doi:10.1080/14653240600855905

    Article  Google Scholar 

  • Ghazanfari S, Tafazzoli-Shadpour M, Shokrgozar MA (2009) Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun 388:601–605. doi:10.1016/j.bbrc.2009.08.072

    Article  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    Google Scholar 

  • Herard AL, Pierrot D, Hinnrasky J, Kaplan H, Sheppard D, Puchelle E, Zahm JM (1996) Fibronectin and its alpha 5 beta 1-integrin receptor are involved in the wound-repair process of airway epithelium. Am J Physiol 271:L726–L733

    Google Scholar 

  • Hsieh AH, Tsai CM, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KL (2000) Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18:220–227. doi:10.1002/jor.1100180209

    Article  Google Scholar 

  • Horikawa A, Okada K, Sato K, Sato M (2000) Morphological changes in osteoblastic cells (MC3T3-E1) due to fluid shear stress: cellular damage by prolonged application of fluid shear stress. Tohoku J Exp Med 191:127–137. doi:10.1620/tjem.191.127

    Article  Google Scholar 

  • Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodont Res 33:500–508

    Article  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:811–827. doi:10.1096/fj.05-5424rev

    Article  Google Scholar 

  • Kaspar D, Seidl W, Neidlinger-Wilke C, Beck A, Claes L, Ignatius A (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35:873–880. doi:10.1016/S0021-9290(02)00058-1

    Article  Google Scholar 

  • Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today 90:75–85. doi:10.1002/bdrc.20173

    Article  Google Scholar 

  • Kim JH, Cho CS, Choung YH, Lim KT, Son HM, Seonwoo H, Baik SJ, Jeon SH, Park JY, Choung PH, Chung JH (2009) Mechanical stimulation of mesenchymal stem cells for tissue engineering. Tissue Eng Regen Med 6:199–206

    Google Scholar 

  • Kreja L, Liedert A, Schlenker H, Brenner RE, Fiedler J, Friemert B, Dürselen L, Ignatius A (2012) Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. J Mater Sci Mater Med 23:2575–2582. doi:10.1007/s10856-012-4710-7

    Article  Google Scholar 

  • Kryger GS, Chong AK, Costa M, Pham H, Bates SJ, Chang J (2007) A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering. J Hand Surg Am 32:597–605. doi:10.1016/j.jhsa.2007.02.018

    Article  Google Scholar 

  • Kulik TJ, Alvarado SP (1993) Effect of stretch on growth and collagen synthesis in cultured rat and lamb pulmonary arterial smooth muscle cells. J Cell Physiol 157:615–624. doi:10.1002/jcp.1041570322

    Article  Google Scholar 

  • Kurpinski K, Chu J, Hashi C, Li S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci 103:16095–16100. doi:10.1073/pnas.0604182103

    Article  Google Scholar 

  • Lampugnani MG (1999) Cell migration into a wounded area in vitro. Methods Mol Biol 96:177–82. doi:10.1385/1-59259-258-9:177

    Google Scholar 

  • Lareu RR, Arsianti I, Subramhanya HK, Yanxian P, Raghunath M (2007) In vitro enhancement of collagen matrix formation and crosslinking for applications in tissue engineering: a preliminary study. Tissue Eng 13:385–391. doi:10.1089/ten.2006.0224

    Article  Google Scholar 

  • Lee DA, Knight MM, Campbell JJ, Bader DL (2011) Stem cell mechanobiology. J Cell Biochem 112:1–9. doi:10.1002/jcb.22758

    Article  Google Scholar 

  • Lee EH, Hui JHP (2006) The potential of stem cells in orthopaedic surgery. J Bone Joint Surg Br 88:841–851

    Article  Google Scholar 

  • Lee EK, Lee JS, Park HS, Kim CH, Gin YJ, Son Y (2005) Cyclic stretch stimulates cell proliferation of human mesenchymal stem cells but do not induce their apoptosis and differentiation. Tissue Eng Regen Med 2:29–33

    Google Scholar 

  • Leskelä HV, Risteli J, Niskanen S, Koivunen J, Ivaska KK, Lehenkari P (2003) Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochem Biophys Res Commun 311:1008–1013. doi:10.1016/j.bbrc.2003.10.095

    Article  Google Scholar 

  • Lester BE, Standley RA, Lee JD, Fink WJ, Trappe SW, Trappe TA (2013) Muscle-specific substrate use during cycle exercise at 1 G: implications for astronaut muscle health. Aviat Space Environ Med 84:789–796

    Article  Google Scholar 

  • Li D, Zhou J, Chowdhury F, Cheng J, Wang N, Wang F (2011) Role of mechanical factors in fate decisions of stem cells. Regen Med 6:229–240. doi:10.2217/rme.11.2

    Article  Google Scholar 

  • Lim CT, Bershadsky A, Sheetz MP (2010) Mechanobiology. J R Soc Interface 7:S291–S293. doi:10.1098/rsif.2010.0150.focus

    Article  Google Scholar 

  • Maloney JM, Nikova D, Lautenschläger F, Clarke E, Langer R, Guck J, Van Vliet KJ (2010) Mesenchymal stem cell mechanics from the attached to the suspended state. Biophys J 99:2479–87. doi:10.1016/j.bpj.2010.08.052

    Article  Google Scholar 

  • Maul TM, Chew DW, Nieponice A, Vorp DA (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10:939–953. doi:10.1007/s10237-010-0285-8

    Article  Google Scholar 

  • Morita Y, Mukai T, Ju Y, Watanabe S (2013) Evaluation of stem cell-to-tenocyte differentiation by atomic force microscopy to measure cellular elastic moduli. Cell Biochem Biophys 66:73–80. doi:10.1007/s12013-012-9455-x

    Article  Google Scholar 

  • Mosley JR, Lanyon LE (1998) Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 23:313–318. doi:10.1016/S8756-3282(98)00113-6

    Article  Google Scholar 

  • Mueller MJ, Maluf KS (2002) Tissue adaptation to physical stress: a proposed “physical stress theory” to guide physical therapist practice, education, and research. Phys Ther 82:383–403

    Google Scholar 

  • Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125. doi:10.1016/S0736-0266(00)00010-3

    Article  Google Scholar 

  • Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43. doi:10.1016/j.tig.2003.11.004

    Article  Google Scholar 

  • Nakano J, Sekino Y, Hamaue Y, Sakamoto J, Yoshimura T, Origuchi T, Okita M (2012) Changes in hind paw epidermal thickness, peripheral nerve distribution and mechanical sensitivity after immobilization in rats. Physiol Res 61:643–647

    Google Scholar 

  • Nam HY, Karunanithi P, Loo WCP, Naveen SV, Chen HC, Hussin P, Chan L, Kamarul T (2013) The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 15:R129. doi:10.1186/ar4309

    Article  Google Scholar 

  • Nam HY, Pingguan-Murphy B, Abbas AA, Merican AM, Kamarul T (2011) Dynamic behaviour of human bone marrow derived-mesenchymal stem cells on uniaxial cyclical stretched substrate - a preliminary study. IFMBE Proc 35:815–818. doi:10.1007/978-3-642-21729-6_199

  • Ouyang HW, Goh JC, Lee EH (2004) Viability of allogeneic bone marrow stromal cells following local delivery into patella tendon in rabbit model. Cell Transpl 13:649–657. doi:10.3727/000000004783983549

    Article  Google Scholar 

  • Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75:424–436. doi:10.1002/(sici)1097-4644(19991201)75:3<424:aid-jcb8>3.0.co;2-8

  • Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T (2012) Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury 43:898–902. doi:10.1016/j.injury.2011.12.006

    Article  Google Scholar 

  • Santos ARA, Duarte CB (2008) Validation of internal control genes for expression studies: effects of the neurotrophin BDNF on hippocampal neurons. J Neurosci Res 86:3684–3692. doi:10.1002/jnr.21796

    Article  Google Scholar 

  • Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Bühring HJ, Stoop R (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25:3244–51. doi:10.1634/stemcells.2007-0300

    Article  Google Scholar 

  • Schätti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, Stoddart MJ (2011) A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater 22:214–225

    Google Scholar 

  • Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ (2003) Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulatedkinase (ERK1/2) signaling pathway. J Biomech 36:1087–1096. doi:10.1016/S0021-9290(03)00110-6

  • Shalaw FG, Slimani S, Kolopp-Sarda MN, Marchand M, Faure G, Stoltz JF, Muller S (2006) Effect of cyclic stretching and foetal bovine serum (FBS) on proliferation and extracellular matrix synthesis of fibroblast. Biomed Mater Eng 16:137–144

    Google Scholar 

  • Song G, Ju Y, Shen X, Luo Q, Shi Y, Qin J (2007) Mechanical stretch promotes proliferation of rat bone marrow mesenchymal stem cells. Colloids Surf B Biointerfaces 58:271–277. doi:10.1016/j.colsurfb.2007.04.001

    Article  Google Scholar 

  • Tan SL, Ahmad TS, Selvaratnam L, Kamarul T (2013) Isolation, characterization and the multi-lineage differentiation potential of rabbit bone marrow-derived mesenchymal stem cells. J Anat 222:437–450. doi:10.1111/joa.12032

    Article  Google Scholar 

  • Tay LX, Ahmad RE, Dashtdar H, Tay KW, Masjuddin T, Ab-Rahim S, Chong PP, Selvaratnam L, Kamarul T (2012) Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am J Sports Med 40:83–90. doi:10.1177/0363546511420819

    Article  Google Scholar 

  • Tesch PA, Pozzo M, Ainegren M, Swarén M, Linnehan RM (2013) Cardiovascular responses to rowing on a novel ergometer designed for both resistance and aerobic training in space. Aviat Space Environ Med 84:516–521

    Article  Google Scholar 

  • Tirkkonen L, Halonen H, Hyttinen J, Kuokkanen H, Sievanen H, Koivisto A, Mannerstrom B, Sandor GKB, Suuronen R, Miettinen S, Haimi S (2011) The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J R Soc Interface 8:1736–1747. doi:10.1098/rsif.2011.0211

    Article  Google Scholar 

  • Tranquillo RT (1999) Self-organization of tissue-equivalents: the nature and role of contact guidance. Biochem Soc Symp 65:27–42

    Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5:426–430. doi:10.1038/nphys1269

    Article  Google Scholar 

  • Veazey KJ, Golding MC (2011) Selection of stable reference genes for quantitative RT-PCR comparisons of mouse embryonic and extra-embryonic stem cells. PLOS ONE 6:10. doi:10.1371/journal.pone.0027592

  • Wang JH, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5:1–16. doi:10.1007/s10237-005-0012-z

    Article  Google Scholar 

  • Wang JHC, Thampatty BP (2008) Mechanobiology of adult and stem cells. Int Rev Cell Mol Biol 271:301–346. doi:10.1016/S1937-6448(08)01207-0

    Article  Google Scholar 

  • Wang YK, Chen CS (2013) Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. J Cell Mol Med 17:823–832. doi:10.1111/jcmm.12061

    Article  Google Scholar 

  • Willems E, Mateizel I, Kemp C, Cauffman G, Sermon K, Leyns L (2006) Selection of reference genes in mouse embryos and in differentiating human and mouse ES cells. Int J Dev Biol 50:627–635. doi:10.1387/ijdb.052130ew

    Article  Google Scholar 

  • Yang G, Crawford RC, Wang JH (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37:1543–50. doi:10.1016/j.jbiomech.2004.01.005

    Article  Google Scholar 

  • Zaritsky A, Kaplan D, Hecht I, Natan S, Wolf L, Gov NS, Ben-Jacob E, Tsarfaty I (2014) Propagating waves of directionality and coordination orchestrate collective cell migration. PLoS Comput Biol 10:e1003747. doi:10.1371/journal.pcbi.1003747

    Article  Google Scholar 

  • Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37:1–57

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by HIR-MoE Grant (Reference No. UM.C/625/1/HIR/ MOHE/MED/04, Account No. E000003-20001) and University of Malaya postgraduate student Grant (PS260/2010B). We also thank the University of Malaya for a Ph.D. thesis scholarship for the first author.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Yin Nam or Tunku Kamarul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, H.Y., Pingguan-Murphy, B., Amir Abbas, A. et al. The proliferation and tenogenic differentiation potential of bone marrow-derived mesenchymal stromal cell are influenced by specific uniaxial cyclic tensile loading conditions. Biomech Model Mechanobiol 14, 649–663 (2015). https://doi.org/10.1007/s10237-014-0628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0628-y

Keywords

Navigation