Skip to main content
Log in

A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales

  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arramon YP, Mehrabadi MM, Martin DW, Cowin SC (2000) A multidimensional anisotropic strength criterion based on Kelvin modes. Int J Solids Struct 37:2915–2935

    Article  MATH  Google Scholar 

  • Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM (2004) The modified super-ellipsoid yield criterion for human trabecular bone. J Biomech Eng 6:677–684

    Google Scholar 

  • Carnelli D, Gastaldi D, Sassi V, Contro R, Ortiz C, Vena P (2010) A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. J Biomech Eng 132(8):081008

    Article  Google Scholar 

  • Carnelli D, Lucchini R, Ponzoni M, Contro R, Vena P (2011) Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response. J Biomech 44(10):1852–1858

    Article  Google Scholar 

  • Cowin SC (1979) On the strength anisotropy of bone and wood. J Appl Mech 46(4):832–838

    Article  MATH  Google Scholar 

  • Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4(2):137–147

    Article  Google Scholar 

  • Cowin SC (1986) Fabric dependence of an anisotropic strength criterion. Mech Mater 5:251–260

    Article  Google Scholar 

  • Cowin SC (1989) Bone mechanics. CRC press, Boca Raton, FL

  • Cowin SC, He QC (2005) Tensile and compressive stress yield criteria for cancellous bone. J Biomech 38(1):141–144

    Article  Google Scholar 

  • Curnier A (1994) Computational methods in solid mechanics, vol 29. Springer, Berlin

    Book  MATH  Google Scholar 

  • Drucker D, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10:157

    MathSciNet  MATH  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  Google Scholar 

  • Gelfand IM, Kapranov MM, Z A (1994) Discriminants, resultants and multidimensional determinants. Birkhuser, Boston

    Book  MATH  Google Scholar 

  • Gibson L (1985) The mechanical behaviour of cancellous bone. J Biomech 18(5):317–328

    Article  Google Scholar 

  • Gupta H, Zioupos P (2008) Fracture of bone tissue: the ’hows’ and the ’whys’. Med Eng Phys 30(10):1209–1226

    Article  Google Scholar 

  • Harrigan TP, Mann RW (1984) Characterisation of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  Google Scholar 

  • Hellmich C, Ulm F-J (2002) Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments. J Biomech 35(9):1199–1212

    Article  Google Scholar 

  • Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174

    Article  Google Scholar 

  • Hill R (1951) The mathematical theory of plasticity. Oxford University Press, Oxford

    Google Scholar 

  • Kanatani K-I (1984) Distribution of directional data and fabric tensors. Int J Eng Sci 22(2):149–164

    Article  MathSciNet  MATH  Google Scholar 

  • Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3(1):307–333

    Article  Google Scholar 

  • Kristic R (1991) Human microscopic anatomy. Springer, Berlin

    Book  Google Scholar 

  • Liu C, Huang Y, Stout M (1997) On the asymmetric yield surface of plastically orthotropic materials: a phenomenological study. Acta Mater 45(6):2397–2406

    Article  Google Scholar 

  • Maghous S, Dormieux L, Barthélémy JF (2009) Micromechanical approach to the strength properties of frictional geomaterials. Eur J Mech A 28(1):179–188

    Google Scholar 

  • Matsuura M, Eckstein F, Lochmüller E-M, Zysset P (2008) The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7:27–42

    Article  Google Scholar 

  • Mehrabadi M, Cowin S (1990) Eigentensors of linear anisotropic elastic materials. Q J Mech Appl Math 43(1):15–41

    Article  MathSciNet  MATH  Google Scholar 

  • Parfitt A (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 36:S123–S128

    Article  Google Scholar 

  • Prager W, Drucker D (1952) Soil mechanics and plastic analysis or limit design, 0. Appi Math 10(2):157–165

    MathSciNet  MATH  Google Scholar 

  • Reisinger A, Pahr D, Zysset PK (2010) Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol 10(1):67–77

    Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102

    Article  Google Scholar 

  • Rincón-Kohli L, Zysset P (2009) Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol 8:195–208

    Article  Google Scholar 

  • Shih CF, Lee D (1978) Further developments in anisotropic plasticity. J Eng Mater 100(3):294–302

    Article  Google Scholar 

  • Smith CI, Faraldos M, Fernández-Jalvo Y (2008) The precision of porosity measurements: effects of sample pre-treatment on porosity measurements of modern and archaeological bone. Palaeogeogr Palaeoclimatol Palaeoecol 266:175–182

    Article  Google Scholar 

  • Tai K, Ulm F-J, Ortiz C (2006) Nanogranular origins of the strength of bone. Nano Lett 6(11):2520–2525

    Article  Google Scholar 

  • Tsai S, Wu E (1971) A general theory of strength for anisotropic materials. J Compos Mater 5(1):58–80

    Article  Google Scholar 

  • von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. Göttin Nachr Math Phys 1:582–592

    Google Scholar 

  • Wang R, Gupta HS (2011) Deformation and fracture mechanisms of bone and nacre. Annu Rev Mater Res 41:41–73

    Article  Google Scholar 

  • Wang X, Allen MR, Burr DB, Lavernia EJ, Jeremic B, Fyhrie DP (2008) Identification of material parameters based on Mohr–Coulomb failure criterion for bisphosphonate treated canine vertebral cancellous bone. Bone 43(4):775–780

    Article  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28(1):271–298

    Article  Google Scholar 

  • Whitehouse W (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101:153–168

    Article  Google Scholar 

  • Wolfram U, Gross T, Pahr D, Schwiedrzik JJ, Wilke H-J, Zysset PK (2012) Fabric based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space. J Mech Behav Biomed 15:218–228

    Google Scholar 

  • Yeni Y, Dong X, Fyhrie D, Les C (2004) The dependence between the strength and stiffness of cancellous and cortical bone tissue for tension and compression: extension of a unifying principle. Biomed Mater Eng 14(3):303–310

    Google Scholar 

  • Zysset PK (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36:1469–1485

    Google Scholar 

  • Zysset PK, Curnier A (1995) An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater 21(4):243–250

    Article  Google Scholar 

  • Zysset PH, Rincón L (2006) An alternative fabric-based yield and failure criterion for trabecular bone. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue, Springer, pp 457–470

Download references

Acknowledgments

This work was supported by the University of Bern and a Ph.D. scholarship of the German National Academic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Schwiedrzik.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwiedrzik, J.J., Wolfram, U. & Zysset, P.K. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomech Model Mechanobiol 12, 1155–1168 (2013). https://doi.org/10.1007/s10237-013-0472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0472-5

Keywords

Navigation