Skip to main content
Log in

Chronological renal resistive index increases related to atherosclerotic factors, and effect of renin-angiotensin system inhibitors

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Renal resistive index (RI) calculated using renal Doppler ultrasonography (RDU) has recently been considered a clinically important indicator of renal outcome, survival, and systemic arteriosclerotic disorders. However, the cause of RI elevation remains unclear. The present study was an effort to first, identify the factors related to RI elevation, and second, understand the effect of renin-angiotensin system inhibitors (RAS-Is) on renal RI elevation.

Methods

We carried out this single-center case-control study among 100 CKD patients, recruited from outpatients who underwent RDU more than twice, at least a year apart. The rate of renal RI change per year (dRIpy) was chosen as the dependent variable: [(last examined renal RI—initial examined renal RI)/(initial examined renal RI × period of observation) × 100 (%/year)]. We examined the association between dRIpy and other clinical and biological data.

Results

Among 100 CKD patients, the average serum creatinine and eGFR were 1.76 ± 0.84 mg/dL and 37.0 ± 18.2 ml/min/1.73 m2, respectively. The average dRIpy in all patients was 1.8 ± 1.4%/year. The linear multiple regression demonstrated that dRIpy was positively associated with the presence of diabetes mellitus (DM) and high low-density lipoprotein cholesterol (LDL) levels, and negatively with eGFR and RAS-I use.

Conclusions

This study demonstrated that the elevation of RI was related to DM, eGFR, high LDL, and the use of RAS-Is. In particular, RAS-Is could contribute towards suppressing the elevation of RI in CKD patients and towards preventing the development of renal failure in CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sugiura T, Wada A. Resistive index predicts renal prognosis in chronic kidney disease: results of a 4-year follow-up. Clin Exp Nephrol. 2011;15:114–20.

    Article  PubMed  Google Scholar 

  2. Sugiura T, Wada A. Resistive index predicts renal prognosis in chronic kidney disease. Nephrol Dial Transplant. 2009;24:2780–5.

    Article  PubMed  Google Scholar 

  3. Radermacher J, Ellis S, Haller H. Renal resistance index and progression of renal disease. Hypertension. 2002;39:699–703.

    Article  CAS  PubMed  Google Scholar 

  4. Okura T, Watanabe S, Miyoshi K, Fukuoka T, Higaki J. Intrarenal and carotid hemodynamics in patients with essential hypertension. Am J Hypertens. 2004;17:240–4.

    Article  PubMed  Google Scholar 

  5. Komuro K, Yokoyama N, Shibuya M, et al. Associations between increased renal resistive index and cardiovascular events. J Med Ultrason. 2016;V43:263–70.

    Article  Google Scholar 

  6. Heine GH, Gerhart MK, Ulrich C, Köhler H, Girndt M. Renal Doppler resistance indices are associated with systemic atherosclerosis in kidney transplant recipients. Kidney Int. 2005;68:878–8.

    Article  PubMed  Google Scholar 

  7. Kawai T, Kamide K, Onishi M, et al. Usefulness of the resistive index in renal Doppler ultrasonography as an indicator of vascular damage in patients with risks of atherosclerosis. Nephrol Dial Transplant. 2011;26:3256–62.

    Article  PubMed  Google Scholar 

  8. Calabia J, Torguet P, Garcia I, et al. The relationship between renal resistive index, arterial stiffness, and atherosclerotic burden: the link between macrocirculation and microcirculation. J Clin Hypertens (Greenwich). 2014;16:186–91.

    Article  Google Scholar 

  9. Kintis K, Tsioufis C, Kasiakogias A, et al. Noninvasive assessment of haemodynamics in resistant hypertension: the role of the renal resistive index. J Hypertens. 2017;35:578–84.

    Article  CAS  PubMed  Google Scholar 

  10. Krumme B, Grotz W, Kirste G, Schollmeyer P, Rump LC. Determinants of intrarenal Doppler indices in stable renal allografts. J Am Soc Nephrol. 1997;8:813–6.

    CAS  PubMed  Google Scholar 

  11. Keogan MT, Kliewer MA, Hertzberg BS, DeLong DM, Tupler RH, Carroll BA. Renal resistive indexes: variability in Doppler US measurement in a healthy population. Radiology. 1996;199:165–9.

    Article  CAS  PubMed  Google Scholar 

  12. Buscemi S, Verga S, Batsis JA, et al. Intra-renal hemodynamics and carotid intima-media thickness in the metabolic syndrome. Diabetes Res Clin Pract. 2009;86:177–85.

    Article  CAS  PubMed  Google Scholar 

  13. Geraci G, Mulè G, Mogavero M, Geraci C, Nardi E, Cottone S. Association between uric acid and renal hemodynamics: pathophysiological implications for renal damage in hypertensive patients. J Clin Hypertens (Greenwich). 2016;18:1007–14.

    Article  CAS  Google Scholar 

  14. Boeri D, Derchi LE, Martinoli C, et al. Intrarenal arteriosclerosis and impairment of kidney function in NIDDM subjects. Diabetologia. 1998;41:121–4.

    Article  CAS  PubMed  Google Scholar 

  15. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56:32–8.

    Article  PubMed  Google Scholar 

  16. Payne RB, Little AJ, Williams RB, Milner JR. Interpretation of serum calcium in patients with abnormal serum proteins. Br Med J. 1973;4:643–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26:6–20.

    Article  Google Scholar 

  18. Eibenberger K, Schima H, Trubel W, Scherer R, Dock W, Grabenwöger F. Intrarenal Doppler ultrasonography: which vessel should be investigated? J Ultrasound Med. 1995;14:451–5.

    Article  CAS  PubMed  Google Scholar 

  19. Japanese Society of Neohrology. Evidence-based Clinical Practice Guideline for CKD 2018. Tokyo: Tokyo igakusya; 2018. (in Japanese).

    Google Scholar 

  20. Inker LA, Astor BC, Fox CH, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713–35.

    Article  PubMed  Google Scholar 

  21. Mancini M, Masulli M, Liuzzi R, et al. Renal duplex sonographic evaluation of type 2 diabetic patients. J Ultrasound Med. 2013;32:1033–40.

    Article  PubMed  Google Scholar 

  22. Sari A, Dinc H, Zibandeh A, Telatar M, Gümele HR. Value of resistive index in patients with clinical diabetic nephropathy. Invest Radiol. 1999;34:718–21.

    Article  CAS  PubMed  Google Scholar 

  23. Matsumoto N, Ishimura E, Taniwaki H, et al. Diabetes mellitus worsens intrarenal hemodynamic abnormalities in nondialyzed patients with chronic renal failure. Nephron. 2000;86:44–51.

    Article  CAS  PubMed  Google Scholar 

  24. Brito PL, Fioretto P, Drummond K, et al. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int. 1998;53:754–61.

    Article  CAS  PubMed  Google Scholar 

  25. Lane PH, Steffes MW, Fioretto P, Mauer SM. Renal interstitial expansion in insulin-dependent diabetes mellitus. Kidney Int. 1993;43:661–7.

    Article  CAS  PubMed  Google Scholar 

  26. Taft JL, Nolan CJ, Yeung SP, Hewitson TD, Martin FI. Clinical and histological correlations of decline in renal-function in diabetic-patients with proteinuria. Diabetes. 1994;43:1046–51.

    Article  CAS  PubMed  Google Scholar 

  27. Mise K, Hoshino J, Ueno T, et al. Clinical and pathological predictors of estimated GFR decline in patients with type 2 diabetes and overt proteinuric diabetic nephropathy. Diabetes Metab Res Rev. 2015;31:572–81.

    Article  CAS  PubMed  Google Scholar 

  28. Sugiura T, Nakamori A, Wada A, Fukuhara Y. Evaluation of tubulointerstitial injury by Doppler ultrasonography in glomerular diseases. Clin Nephrol. 2004;61:119–26.

    Article  CAS  PubMed  Google Scholar 

  29. Boddi M, Cecioni I, Poggesi L, et al. Renal resistive index early detects chronic tubulointerstitial nephropathy in normo- and hypertensive patients. Am J Nephrol. 2006;26:16–21.

    Article  PubMed  Google Scholar 

  30. Imai E, Horio M, Yamagata K, et al. Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res. 2008;31:433–41.

    Article  PubMed  Google Scholar 

  31. Tsai CW, Ting IW, Yeh HC, et al. Longitudinal change in estimated GFR among CKD patients: a 10-year follow-up study of an integrated kidney disease care program in Taiwan. PLoS One. 2017;12:e0173843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baba M, Shimbo T, Horio M, et al. Longitudinal study of the decline in renal function in healthy subjects. PLoS One. 2015;10:e0129036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Go AS, Chertow GM, Fan D, et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  34. Derchi LE, Leoncini G, Parodi D, et al. Mild renal dysfunction and renal vascular resistance in primary hypertension. Am J Hypertens. 2005;18:966–71.

    Article  CAS  PubMed  Google Scholar 

  35. Imano H, Noda H, Kitamura A, et al. Low-density lipoprotein cholesterol and risk of coronary heart disease among Japanese men and women: the Circulatory Risk in Communities Study (CIRCS). Prev Med. 2011;52:381–6.

    Article  CAS  PubMed  Google Scholar 

  36. Geraci G, Mulè G, Mogavero M, et al. Renal haemodynamics and severity of carotid atherosclerosis in hypertensive patients with and without impaired renal function. Nutr Metab Cardiovasc Dis. 2015;25:160–6.

    Article  CAS  PubMed  Google Scholar 

  37. Hunsicker LG, Adler S, Caggiula A, et al. Predictors of the progression of renal disease in the Modification of Diet in Renal Disease study. Kidney international. 1997;51:1908–19.

    Article  CAS  PubMed  Google Scholar 

  38. Rahman M, Yang W, Akkina S, et al. Relation of serum lipids and lipoproteins with progression of CKD: the CRIC study. Clin J Am Soc Nephrol. 2014;9:1190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hashimoto J, Ito S. Central pulse pressure and aortic stiffness determine renal hemodynamics: pathophysiological implication for microalbuminuria in hypertension. Hypertension. 2011;58:839–46.

    Article  CAS  PubMed  Google Scholar 

  40. Tublin ME, Tessler FN, Murphy ME. Correlation between renal vascular resistance, pulse pressure, and the resistive index in isolated perfused rabbit kidneys. Radiology. 1999;213:258–64.

    Article  CAS  PubMed  Google Scholar 

  41. Mills CJ, Gabe IT, Gault JH, et al. Pressure-flow relationships and vascular impedance in man. Cardiovasc Res. 1970;4:405–17.

    Article  CAS  PubMed  Google Scholar 

  42. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.

    Article  CAS  PubMed  Google Scholar 

  43. Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis. 1992;20:1–17.

    Article  CAS  PubMed  Google Scholar 

  44. Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17:17–25.

    Article  CAS  Google Scholar 

  45. Mori T, Polichnowski A, Glocka P, et al. High perfusion pressure accelerates renal injury in salt-sensitive hypertension. J Am Soc Nephrol. 2008;19:1472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. ACCORD Study Group. Cushman WC, Evans GW, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010; 362: 1575–85.

    Article  CAS  Google Scholar 

  47. Berl T, Hunsicker LG, Lewis JB, et al. Impact of achieved blood pressure on cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial. J Am Soc Nephrol. 2005;16:2170–9.

    Article  CAS  PubMed  Google Scholar 

  48. Reynolds JC, Salcido DD, Menegazzi JJ. Coronary perfusion pressure and return of spontaneous circulation after prolonged cardiac arrest. Prehosp Emerg Care. 2010;14:78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Textor SC. Ischemic nephropathy: where are we now? J Am Soc Nephrol. 2004;15:1974–82.

    Article  CAS  PubMed  Google Scholar 

  50. SPRINT Research Group. Wright JT Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015; 373: 2103–16.

    Article  CAS  Google Scholar 

  51. Cheung AK, Rahman M, Reboussin DM, et al. Effects of Intensive BP Control in CKD. J Am Soc Nephrol. 2017;28:2812–23.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Anderson TJ, Elstein E, Haber H, Charbonneau F. Comparative study of ACE-inhibition, angiotensin II antagonism, and calcium channel blockade on flow-mediated vasodilation in patients with coronary disease (BANFF study). J Am Coll Cardiol. 2000;35:60–6.

    Article  CAS  PubMed  Google Scholar 

  53. Derosa G, Maffioli P, Ferrari I, et al. Different actions of losartan and ramipril on adipose tissue activity and vascular remodeling biomarkers in hypertensive patients. Hypertens Res. 2011;34:145–51.

    Article  CAS  PubMed  Google Scholar 

  54. Tiryaki O, Usalan C, Buyukhatipoglu H, Sayiner ZA, Kilisli H. Effects of lisinopril, irbesartan, and amlodipine on the thrombogenic variables in the early and late stages of the treatment in hypertensive patients. Clin Exp Hypertens. 2012;34:145–52.

    Article  CAS  PubMed  Google Scholar 

  55. Watanabe S, Okura T, Kurata M, Irita J, Manabe S, Miyoshi K, Fukuoka T, Gotoh A, Uchida K, Higaki J. Valsartan reduces serum cystatin C and the renal vascular resistance in patients with essential hypertension. Clin Exp Hypertens. 2006;28:451–61.

    Article  CAS  PubMed  Google Scholar 

  56. Caruso D, D‘Avino M, Acampora C, et al. Effects of losartan and chlorthalidone on blood pressure and renal vascular resistance index in non-diabetic patients with essential hypertension and normal renal function. J Cardiovasc Pharmacol. 2004;44:520–4.

    Article  CAS  PubMed  Google Scholar 

  57. Leoncini G, Martinoli C, Viazzi F, et al. Changes in renal resistive index and urinary albumin excretion in hypertensive patients under long-term treatment with lisinopril or nifedipine GITS. Nephron. 2002;90:169–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshito Yamaguchi.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethics approval

The study was approved by the ethics committee in the hospital.

Informed consent

Informed consent was obtained from each participant. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board and we confirmed the exemption of acquiring an approval number by the institutional review board based on the provisions about retrospective observational study. The study was conducted in accordance with the Declaration of Helsinki and its partial amendments.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, Y., Akagaki, F., Nakamori, A. et al. Chronological renal resistive index increases related to atherosclerotic factors, and effect of renin-angiotensin system inhibitors. Clin Exp Nephrol 23, 513–520 (2019). https://doi.org/10.1007/s10157-018-1667-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-018-1667-y

Keywords

Navigation