Skip to main content
Log in

Environmental influence on commercial fishery landings of small pelagic fish in Portugal

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Small pelagic fishes are particularly abundant in areas with high environmental variability (zones of coastal upwelling and areas of tidal mixing and river discharge), and because of this, their abundance suffers large inter-annual and inter-decadal fluctuations. In Portugal, the most important species in terms of landings are European sardine, Atlantic horse mackerel and Atlantic chub mackerel. Small pelagic fish landings account for 62.8 % of the total fish biomass and represent 32.7 % of the economical value of all catches. We have investigated trends in landings of these small pelagic fishes and detected the effects of environmental factors in this fishery. In order to explain the variability of landings of small pelagic fishes, we have used official landings (1965–2012) for trawling and purse seine fisheries and applied generalized linear models, using the North Atlantic Oscillation index (NAO) (annual and winter NAO index), sea surface temperature (SST), wind data (strength and North–South and East–West wind components) and rainfall, as explanatory variables. Regression analysis was used to describe the relationship between landings and SST. The models explained between 50.16 and 51.07 % of the variability of the LPUE, with the most important factors being winter NAO index, SST and wind strength. The LPUE of European sardine and Atlantic horse mackerel was negatively correlated with SST, and LPUE of Atlantic chub mackerel was positively correlated with SST. The use of landings of three important species of small pelagic fishes allowed the detection of variations in landings associated with changes in sea water temperature and NAO index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abaunza P, Gordo L, Karlou-Riga C, Murta A, Eltink ATGW, Garcia Santamaria MT, Zimmermann C, Hammer C, Lucio P, Iversen SA, Molloy J, Gallo E (2003) Growth and reproduction of horse mackerel, Trachurus trachurus (carangidae). Rev Fish Biol Fish 13:27–61. doi:10.1023/A:1026334532390

    Article  Google Scholar 

  • Allison EH, Perry AL, Badjeck M-C, Neil Adger W, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi:10.1111/j.1467-2979.2008.00310.x

    Article  Google Scholar 

  • Bailey KM (1981) Larval transport and recruitment of Pacific hake Merluccius productus. Mar Ecol Prog Ser 6:1–9

    Article  Google Scholar 

  • Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. Science 247:198–201. doi:10.1126/science.247.4939.198

    Article  CAS  Google Scholar 

  • Bakun A (2010) Linking climate to population variability in marine ecosystems characterized by non-simple dynamics: conceptual templates and schematic constructs. J Mar Syst 79:361–374. doi:10.1016/j.jmarsys.2008.12.008

    Article  Google Scholar 

  • Belvèze H, Erzini K (1983) The influence of hydroclimatic factors on the availability of the sardine (Sardina pilchardus Walbaum) in the Moroccan Atlantic fishery. FAO Fish Rep 2:265–309

    Google Scholar 

  • Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK, Barange M (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Phil Trans R Soc B 367:2979–2989. doi:10.1098/rstb.2012.0231

    Article  Google Scholar 

  • Borges MF, Gordo LS (1991) Spatial distribution by season and some biological parameters of horse mackerel (Trachurus trachurus L.) in the Portuguese continental waters (Division Ixa). ICES C.M. 1991/H:54, Pelagic Fish Cttee, 15 p

  • Borges MF, Santos AMP, Crato N, Mendes H, Mota B (2003) Sardine regime shifts off Portugal: a time series analysis of catches and wind conditions. Sci Mar 67:235–244

    Google Scholar 

  • Borja A, Uriarte A, Valencia V, Motos L, Uriarte A (1996) Relationships between anchovy (Engraulis encrasicolus L.) recruitment and the environment in the Bay of Biscay. Sci Mar 60:179–192

    Google Scholar 

  • Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402. doi:10.1016/j.jmarsys.2008.12.015

    Article  Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Castillo J, Barbieri MA, Gonzalez A (1996) Relationship between sea surface temperature, salinity, and pelagic fish distribution off northern Chile. ICES J Mar Sci 53:139–146. doi:10.1006/jmsc.1996.0014

    Article  Google Scholar 

  • Checkley D, Alheit J, Oozeki Y, Roy C (2009) Climate change and small pelagic fish. Cambridge University Press Cambridge, UK

    Book  Google Scholar 

  • Cheung WWL, Close C, Lam VWY, Watson R, Pauly D (2008) Application of macroecological theory to predict effects of climate change on global fisheries potential. Mar Ecol Prog Ser 365:187–197. doi:10.3354/meps07414

    Article  Google Scholar 

  • Cheung WWL, Lam VWY, Sarmiento KL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16:24–35. doi:10.1111/j.1365-2486.2009.01995.x

    Article  Google Scholar 

  • Cheung WWL, Watson R, Pauly P (2013) Signature of ocean warming in global fisheries catch. Nature 497:365–369. doi:10.1038/nature12156

    Article  CAS  Google Scholar 

  • Collete BB, Nauen CE (1983) FAO species catalogue, vol. 2. Scombrids of the world. Annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fish Synop No. 125, 2:137 pp

  • Coombs SH, Smyth TJ, Conway DVP, Halliday NC, Bernal M, Stratoudakis Y, Alvarez P (2006) Spawning season and temperature relationships for sardine (Sardina pilchardus) in the eastern North Atlantic. J Mar Biol Assoc UK 86:1245–1252. doi:10.1017/S0025315406014251

    Article  Google Scholar 

  • Cury P, Roy C (1989) Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can J Fish Aquat Sci 46:670–680. doi:10.1139/f89-086

    Article  Google Scholar 

  • Da Rocha J-M, Gutiérrez M-J, Villasante S (2014) Economic effects of global warming under stock growth uncertainty: the European sardine fishery. Reg Environ Change 14:195–205. doi:10.1007/s10113-013-0466-y

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Dickson RR, Kelly PM, Colebrook JM, Wooster WS, Cushing DH (1988) North winds and production in the eastern North Atlantic. J Plankton Res 10:151–169. doi:10.1093/plankt/10.1.151

    Article  Google Scholar 

  • Directorate General for Fisheries and Aquaculture (2000–2012) Fishery Resources—Statistics Series (in Portuguese)

  • Directorate of Fisheries (1965–1969) Fisheries Statistics of the Mainland and Adjacent Islands—Navy Department (in Portuguese)

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi:10.1146/annurev.marine.010908.163834

    Article  Google Scholar 

  • Ehrich S, Stelzenmüller V, Adlerstein S (2009) Linking spatial pattern of bottom fish assemblages with water masses in the North Sea. Fish Oceanogr 18(1):36–50. doi:10.1111/j.1365-2419.2008.00495.x

    Article  Google Scholar 

  • Firth D (1988) Multiplicative errors: log-normal or gamma? JR Stat Soc B 50:266–268

    Google Scholar 

  • Fréon P, Cury P, Shannon L, Roy C (2005) Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull Mar Sci 76:385–462

    Google Scholar 

  • Gamito R, Teixeira CM, Costa MJ, Cabral HN (2013) Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Reg Environ Change 13:413–421. doi:10.1007/s10113-012-0358-6

    Article  Google Scholar 

  • Gamito R, Teixeira CM, Costa MJ, Cabral HN (2015) Are regional fisheries’ catches changing with climate? Fish Res 161:207–216. doi:10.1016/j.fishres.2014.07.014

    Article  Google Scholar 

  • Garza-Gil MD, Torralba-Canom J, Varela-Lafuente MM (2011) Evaluating the economic effects of climate change on the European sardine fishery. Reg Environ Change 11:87–95. doi:10.1007/s10113-010-0121-9

    Article  Google Scholar 

  • Grbec B, Dulčić J, Morović M (2002) Long-term changes in landings of small pelagic fish in the eastern Adriatic—possible influence of climate oscillations over the Northern Hemisphere. Clim Res 20:241–252. doi:10.3354/cr020241

    Article  Google Scholar 

  • Hallett TB, Coulson T, Pilkingston JG, Clutton-Brock TH, Pemberton JM, Grenfell BT (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75. doi:10.1038/nature02708

    Article  CAS  Google Scholar 

  • Hare JA, Able KW (2007) Mechanistic links between climate and fisheries along the east coast of the United States: explaining population outbursts of Atlantic croacker (Micropogonis undulatus). Fish Oceanogr 16:31–45. doi:10.1111/j.1365-2419.2006.00407.x

    Article  Google Scholar 

  • Harris V, Edwards M, Olhede SC (2014) Multidecadal Atlantic climate variability and its impact on marine pelagic communities. J Mar Syst 133:55–69. doi:10.1016/j.jmarsys.2013.07.001

    Article  Google Scholar 

  • Higgason KD, Brown M (2009) Local solutions to manage the effects of global climate change on a marine ecosystem: a process guide for marine resource managers. ICES J Mar Sci 66:1640–1646. doi:10.1093/icesjms/fsp133

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the World’s marine ecosystems. Science 328:1523–1528. doi:10.1126/science.1189930

    Article  CAS  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676

    Article  CAS  Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (Eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact, vol. 134. Geophys Monogr Ser. pp. 1–35. doi: 10.1029/134GM01

  • IPCC (Intergovernmental Panel on Climate Change) (2007a) Summary for policymakers. In: Solomon S, Qin D, Mannin M et al (eds) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, Working Group I Contribution to the Fourth Assessment Report of the IPCC, pp 1–18

    Chapter  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007b) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, 976 p

  • Jennings S, Melin F, Blanchard J, Foster R, Dulvy N, Wilson R (2008) Global-scale predictions of community and ecosystem properties from simple ecological theory. Proc R Soc B Biol Sci 275:1375–1383. doi:10.1098/rspb.2008.0192

    Article  Google Scholar 

  • Kitahara EM, Matsuura Y (1995) Growth mortality estimate of the southwest Atlantic anchovy Engraulis anchoita larvae from Cape Santa Marta Grande in southern Brazil. Arch Fish Mar Res 42:251–262

    Google Scholar 

  • Lasker R (1981) Marine fish larvae. Morphology, ecology, and relation to fisheries. University of Washington Press, Seattle

    Google Scholar 

  • Levi D, Andreoli MG, Bonanno A, Fiorentino F, Garofalo G, Mazzola S, Norrito G, Patti B, Pernice G, Ragonese S, Giusto GB, Rizzo P (2003) Embedding sea surface temperature anomalies into the stock recruitment relationship of red mullet (Mullus barbatus L. 1758) in the Strait of Sicily. Sci Mar 67:259–268

    Article  Google Scholar 

  • Lloret J, Lleonart J, Solé I, Fromentinc J-M (2001) Fluctuations of landings and environmental conditions in the northwestern Mediterranean Sea. Fish Oceanogr 10:33–50. doi:10.1046/j.1365-2419.2001.00151.x

    Article  Google Scholar 

  • Lloret J, Palomera I, Salat J, Sole I (2004) Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean). Fish Oceanogr 13:102–110. doi:10.1046/j.1365-2419.2003.00279.x

    Article  Google Scholar 

  • Lluch-Belda D, Crawford RJM, Kawasaki T, MacCall AD, Parrish RH, Schwartzlose RA, Smith PE (1989) World-wide fluctuations of sardine and anchovy stocks: the regime problem. S Afr J Mar Sci 8:195–205. doi:10.2989/02577618909504561

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809. doi:10.1126/science.1128035

    Article  CAS  Google Scholar 

  • Macías D, Castilla-Espino D, García-del-Hoyo JJ, Navarro G, Catalán IA, Renault L, Ruiz J (2014) Consequences of a future climatic scenario for the anchovy fishery in the Alboran Sea (SW Mediterranean): a modeling study. J Mar Syst 135:150–159. doi:10.1016/j.jmarsys.2013.04.014

    Article  Google Scholar 

  • Madin EMP, Ban NC, Doubleday ZA, Holmes TH, Pecl GT, Smith F (2012) Socio-economic and management implications of range shifting species in marine systems. Glob Environ Change 22:137–146. doi:10.1016/j.gloenvcha.2011.10.008

    Article  Google Scholar 

  • Martín P, Sabatés A, Lloret J, Martin-Vide J (2012) Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim Change 110:925–939. doi:10.1007/s10584-011-0091-z

    Article  Google Scholar 

  • Martins MM (1996) New biological data on growth and maturity of Spanish mackerel (Scomber japonicus) off the Portuguese coast (ICES Division IX a). ICES CM1996/H:23

  • Martins MMB, Jorge IM, Gordo LS (1983) On the maturity, morphological characteristics and growth of Scomber japonicus Houttuyn, 1780 of west continental coast of Portugal. ICES CM1983/H:39:9 pp

  • Martins MM, Skagen D, Marques V, Zwolinski J, Silva A (2013) Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fisheries off Portugal. Sci Mar 77:551–563. doi:10.3989/scimar.03861.07B

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized Linear Models. Chapman and Hall, London

    Book  Google Scholar 

  • Ménard F, Marsac F, Bellier E, Cazelles B (2007) Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis. Fish Oceanogr 16:95–104. doi:10.1111/j.1365-2419.2006.00415.x

    Article  Google Scholar 

  • Myers RA, Pepin P (1990) The robustness of lognormal based estimators of abundance. Biometrics 46:1185–1192. doi:10.2307/2532460

    Article  Google Scholar 

  • National Institute of Statistics (1970–1999) Fisheries Statistics of the Mainland and Adjacent Islands (in Portuguese)

  • Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14. doi:10.1007/s004420100655

    Article  Google Scholar 

  • Parrish RC, Nelson CS, Bakun A (1981) Transport mechanisms and reproductive success of fishes in the California Current. Biol Oceanogr 1:175–203. doi:10.1080/01965581.1981.10749438

    Google Scholar 

  • Pauly D, Christensen V, Guĕınette S, Pitcher TJ, Sumaila UR, Walters CJ (2002) Towards sustainability in world fisheries. Nature 418:689–695. doi:10.1038/nature01017

    Article  CAS  Google Scholar 

  • Pennington M, Myers RA, Pepin P (1991) On testing the robustness of lognormal based estimators. Biometrics 47:1623–1624

    Article  Google Scholar 

  • Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322

    Article  CAS  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156

    Article  Google Scholar 

  • Poulard J-C, Léauté J-P (2002) Interaction between marine populations and fishing activities: temporal patterns of landings of La Rochelle trawlers in the Bay of Biscay. Aquat Living Resour 15:197–210. doi:10.1016/S0990-7440(02)01182-8

    Article  Google Scholar 

  • Priede IG, Godbold JA, Niedzielski T, Collins MA, Bailey DM, Gordon JDM, Zuur AF (2011) A review of the spatial extent of fishery effects and species vulnerability of the deep-sea demersal fish assemblage of the Porcupine Seabight, Northeast Atlantic Ocean (ICES Subarea VII). ICES J Mar Sci 68:281–289. doi:10.1093/icesjms/fsq045

    Article  Google Scholar 

  • R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

  • Roy CP, Cury P, Fontana A, Belvèze H (1989) Stratégies spatio-temporelles de la reproduction des clupéidés des zones d’upwelling d’Afrique de l’Ouest. Aquat Living Resour 2:21–29. doi:10.1051/alr:1989003

    Article  Google Scholar 

  • Sabatés A, Martín P, Lloret J, Raya V (2006) Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Glob Change Biol 12:2209–2219. doi:10.1111/j.1365-2486.2006.01246.x

    Article  Google Scholar 

  • Santos FD, Miranda P (2006) In: Santos FD, Miranda P (Eds.) Climate change in Portugal: Scenarios, impacts and adaptation measures. Projeto SIAM II. Gradiva, Lisboa, Portugal, 506 p (in Portuguese)

  • Santos AMP, Borges MF, Groom S (2001) Sardine and horse mackerel recruitment and upwelling off Portugal. ICES J Mar Sci 58:589–596. doi:10.1006/jmsc.2001.1060

    Article  Google Scholar 

  • Santos MB, González-Quirós R, Riveiro I, Cabanas JM, Porteiro C, Pierce GJ (2012) Cycles, trends, and residual variation in the Iberian sardine (Sardina pilchardus) recruitment series and their relationship with the environment. ICES J Mar Sci 69:739–750. doi:10.1093/icesjms/fsr186

    Article  Google Scholar 

  • Schwartzlose RA, Alheit J, Bakun A, Baumgartner TR, Cloete R, Crawford RJM, Fletcher WJ, Green-Ruiz Y, Hagen E, Kawasaki T, Lluch-Belda D, Lluch-Cota SE, MacCall AD, Matsuura Y, Nevárez-Martínez MO, Parrish RH, Roy C, Serra R, Shust KV, Ward MN, Zuzunaga JZ (1999) Worldwide large-scale fluctuations of sardines and anchovy populations. S Afr J Mar Sci 21:289–347. doi:10.2989/025776199784125962

    Article  Google Scholar 

  • Silva A, Santos MB, Caneco B, Pestana G, Porteiro C, Carrera P, Stratoudakis Y (2006) Temporal and geographic variability of sardine maturity at length in the northeastern Atlantic and the western Mediterranean. ICES J Mar Sci 63:663–676. doi:10.1016/j.icesjms.2006.01.005

    Article  Google Scholar 

  • Stefánsson G (1996) Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES J Mar Sci 53:577–588. doi:10.1006/jmsc.1996.0079

    Article  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan K-S, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond B Biol Sci 270:2087–2096. doi:10.1098/rspb.2003.2415

    Article  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Belgrano A (2004) Marine ecosystems and climate variation. Oxford University Press, New York, p 264

    Google Scholar 

  • Stratoudakis Y, Coombs S, Lanzós AL, Halliday N, Costas G, Caneco B, Franco C, Conway D, Santos MB, Silva A, Bernal M (2007) Sardine (Sardina pilchardus) spawning seasonality in European waters of the northeast Atlantic. Mar Biol 152:201–212. doi:10.1007/s00227-007-0674-4

    Article  Google Scholar 

  • Sumaila UR, Cheung WWL, Lam VWY, Pauly D, Herrick S (2011) Climate change impacts on the biophysics and economics of world fisheries. Nat Clim Chang 1:449–456. doi:10.1038/nclimate1301

    Article  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc Lond B 278:1823–1830. doi:10.1098/rspb.2010.1295

    Article  Google Scholar 

  • Tacon A, Metian M (2009) Fishing for aquaculture: non-food use of small pelagic forage fish—a global perspective. Rev Fish Sci 17:305–317. doi:10.1080/10641260802677074

    Article  Google Scholar 

  • Teixeira CM, Gamito R, Leitão F, Cabral HN, Erzini K, Costa MJ (2014) Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg Environ Change 14:657–669. doi:10.1007/s10113-013-0524-5

    Article  Google Scholar 

  • Theilacker GH (1986) Starvation-induced mortality of young sea-caught jack mackerel, Trachurus symmetricus, determined with histological and morphological methods. Fish Bull 84:1–17

    Google Scholar 

  • Vasconcelos J, Afonso-Dias M, Faria G (2012) Atlantic chub mackerel (Scomber colias) spawning season, size and age at first maturity in Madeira waters. Arquipel Life Mar Sci 29:43–51

    Google Scholar 

  • Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790. doi:10.1126/science.1132294

    Article  CAS  Google Scholar 

  • Wyatt T, Pérez-Gándaras G (1988) Ekman transport and sardine yields in western Iberia. In: International symposium on long-term changes in marine fish populations, Vigo, pp. 125–138

Download references

Acknowledgments

This study had the support of the Fundação para a Ciência e a Tecnologia (FCT) (UID/MAR/04292/2013). Célia M. Teixeira was funded with a Post-doc Grant (SFRH/BPD/62986/2009), Rita Gamito was funded with a PhD Grant (SFRH/BD/78363/2011) and Francisco Leitão was funded with a Post-doc Grant (SFRH/BPD/63935/2009) by the FCT. We thank Dr. Alexandra Silva (Instituto Português do Mar e da Atmosfera) for the European sardine and Atlantic chub mackerel data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célia M. Teixeira.

Additional information

Editor: Wolfgang Cramer.

Alberto G. Murta: Posthumous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, C.M., Gamito, R., Leitão, F. et al. Environmental influence on commercial fishery landings of small pelagic fish in Portugal. Reg Environ Change 16, 709–716 (2016). https://doi.org/10.1007/s10113-015-0786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0786-1

Keywords

Navigation