Skip to main content

Advertisement

Log in

Low-energy laser therapy application on knee joints as an auxiliary treatment in patients with polyarticular juvenile idiopathic arthritis: a dual-arm randomized clinical trial

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Patients with juvenile idiopathic arthritis (JIA) always experience persistent pain and stiffness which induces muscle weakness, fatigue, and functional limitations. This study evaluated whether applying low-energy laser therapy (LLT) on the knee joint could be an effective adjuvant intervention for patients with JIA. Sixty children with polyarticular JIA participated and were randomly allocated to receive either LLT (wavelength λ = 903 nm; power output of 50 mW; and energy of 1.5 J) plus exercises (LLT group) or exercises alone (control group). Pain, peak concentric torque of quadriceps muscles, fatigue, and functional status were measured by the visual analogue scale, isokinetic testing system, Pediatric Quality of Life Inventory Multidimensional Fatigue Scale, and Childhood Health Assessment Questionnaire, respectively pre- and post-intervention, and at 6-month follow-up. Per the mixed-model analysis of variance, the LLT group showed a statistically more favorable improvement in pain (P = .003, ηp2 = .014), fatigue perception (P = .004, ηp2 = .015), and functional status (P = .022, ηp2 = .09) across the three assessment occasions, as compared to the control group. However, no significant difference was demonstrated between both groups concerning peak concentric torque (all P > .05). Incorporation of LLT into the standard physical rehabilitation program for patients with JIA has the potential to induce more conducive improvements in pain, fatigue, and functional performance, but is not effective for improving muscle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barut K, Adrovic A, Şahin S, Kasapçopur Ö (2017) Juvenile idiopathic arthritis. Balkan Med J 34(2):90

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ravelli A, Martini A (2007) Juvenile idiopathic arthritis. Lancet 369(9563):767–778

    Article  CAS  PubMed  Google Scholar 

  3. Hahn Y-S, Kim J-G (2010) Pathogenesis and clinical manifestations of juvenile rheumatoid arthritis. Korean J Pediatr 53(11):921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bos GJ, Lelieveld OT, Armbrust W, Sauer PJ, Geertzen JH, Dijkstra PU (2016) Physical activity in children with juvenile idiopathic arthritis compared to controls. Pediatr Rheumatol 14(1):1–8

    Article  Google Scholar 

  5. Klepper S, Khong TTM, Klotz R, Gregorek AO, Chan YC, Sawade S (2019) Effects of structured exercise training in children and adolescents with juvenile idiopathic arthritis. Pediatr Phys Ther 31(1):3–21

    Article  PubMed  Google Scholar 

  6. Armbrust W, Lelieveld OH, Tuinstra J, Wulffraat NM, Bos GJ, Cappon J et al (2016) Fatigue in patients with juvenile idiopathic arthritis: relationship to perceived health, physical health, self-efficacy, and participation. Pediatr Rheumatol 14(1):65

    Article  Google Scholar 

  7. Armbrust W, Siers NE, Lelieveld OT, Mouton LJ, Tuinstra J, Sauer P (2016) Fatigue in patients with juvenile idiopathic arthritis: a systematic review of the literature. Semin Arthritis Rheum 45(5):587–595

    Article  PubMed  Google Scholar 

  8. Tarakci E, Yeldan I, Baydogan SN, Olgar S, Kasapcopur O (2012) Efficacy of a land-based home exercise programme for patients with juvenile idiopathic arthritis: a randomized, controlled, single-blind study. J Rehabil Med 44(11):962–967

    Article  PubMed  Google Scholar 

  9. Kuntze G, Nesbitt C, Whittaker JL, Nettel-Aguirre A, Toomey C, Esau S et al (2018) Exercise therapy in juvenile idiopathic arthritis: a systematic review and meta-analysis. Arch Phys Med Rehabil 99(1):178–93. el

    Article  PubMed  Google Scholar 

  10. Elnaggar RK, Elshafey MA (2016) Effects of combined resistive underwater exercises and interferential current therapy in patients with juvenile idiopathic arthritis: a randomized controlled trial. Am J Phys Med Rehabil 95(2):96–102

    Article  PubMed  Google Scholar 

  11. DoğruApti M, Kasapçopur Ö, Mengi M, Öztürk G, Metin G (2014) Regular aerobic training combined with range of motion exercises in juvenile idiopathic arthritis. Biomed Res Int 2014:748972

    Google Scholar 

  12. Sule SD, Fontaine KR (2019) Slow speed resistance exercise training in children with polyarticular juvenile idiopathic arthritis. Open Access Rheumatol Res Rev 11:121

    CAS  Google Scholar 

  13. Elnaggar RK, Mohammed R, Abdelhalim N, Samhan A (2015) A rehabilitation program recommendation for children with juvenile psoriatic arthritis. Int J Ther Rehabil Res 4(4):1–8

    Google Scholar 

  14. Fellas A, Coda A, Hawke F (2017) Physical and mechanical therapies for lower-limb problems in juvenile idiopathic arthritis: a systematic review with meta-analysis. J Am Podiatr Med Assoc 107(5):399–412

    Article  PubMed  Google Scholar 

  15. Bjordal JM, Johnson MI, Lopes-Martins RA, Bogen B, Chow R, Ljunggren AE (2007) Short-term efficacy of physical interventions in osteoarthritic knee pain: a systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskelet Disord 8(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  16. Elnaggar RK (2020) Pulsed Nd:YAG laser: effects on pain, postural stability, and weight-bearing pattern in children with hemophilic ankle arthropathy. Lasers Med Sci 35(5):1075–1083

    Article  PubMed  Google Scholar 

  17. Felismino AS, Costa EC, Aoki MS, Ferraresi C, Lemos TMdAM, de Brito Vieira WH (2014) Effect of low-level laser therapy (808 nm) on markers of muscle damage: a randomized double-blind placebo-controlled trial. Lasers Med Sci 29(3):933–8

    PubMed  Google Scholar 

  18. Harjacek M, Kelava T, Lamot L (2008) The therapeutic value of low-energy laser (LLLT) for enthesitis in children with juvenile spondyloarthropathies. Pediatr Rheumatol 6(1):P64

    Article  Google Scholar 

  19. Kingsley JD, Demchak T, Mathis R (2014) Low-level laser therapy as a treatment for chronic pain. Front Physiol 5:306

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cotler HB, Chow RT, Hamblin MR, Carroll J. The use of low level laser therapy (LLLT) for musculoskeletal pain. MOJ Orthop Rheumatol 2015;2(5).

  21. Fulga C (1998) Antiinflammatory effect of laser therapy in rheumatoid arthritis. Rom J Intern Med 36(3–4):273–279

    CAS  PubMed  Google Scholar 

  22. Eid MA, Aly SM (2015) LASER versus electromagnetic field in treatment of hemarthrosis in children with hemophilia. Lasers Med Sci 30(8):2179–2187

    Article  PubMed  Google Scholar 

  23. Martini A, Ravelli A, Avcin T, Beresford MW, Burgos-Vargas R, Cuttica R et al (2019) Toward new classification criteria for juvenile idiopathic arthritis: first steps, pediatric rheumatology international trials organization international consensus. J Rheumatol 46(2):190–197

    Article  PubMed  Google Scholar 

  24. Αzab AR, Elnaggar RK, Diab RH, Moawd SA (2020) Therapeutic value of kinesio taping in reducing lower back pain and improving back muscle endurance in adolescents with hemophilia. J Musculoskelet Neuronal Interact 20(2):256–264

    PubMed  Google Scholar 

  25. Berntson L, Svensson E (2001) Pain assessment in children with juvenile chronic arthritis: a matter of scaling and rater. Acta Paediatr 90(10):1131–1136

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira-Júnior J, Vieira C, Soares S, Magalhães I, Rocha-Júnior V, Vieira A et al (2013) Effects of different isokinetic knee extension warm-up protocols on muscle performance. J Sports Med Phys Fitness 53(Suppl. 1 to No. 3):25–9

    Google Scholar 

  27. Bishop D (2003) Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med 33(6):439–454

    Article  PubMed  Google Scholar 

  28. DeRenne C (2010) Effects of postactivation potentiation warm-up in male and female sport performances: a brief review. Strength Cond J 32(6):58–64

    Article  Google Scholar 

  29. Varni JW, Burwinkle TM, Szer IS (2004) The PedsQL Multidimensional Fatigue Scale in pediatric rheumatology: reliability and validity. J Rheumatol 31(12):2494–2500

    PubMed  Google Scholar 

  30. Samhan AF, Abdulhalim NM, Elnaggar RK, Mahmoud WS (2020) Assessment of the clinical effects of aquatic-based exercises in the treatment of children with juvenile dermatomyositis: A 2 × 2 controlled-crossover trial. Arch Rheumatol 35(1):97–106

    Article  PubMed  Google Scholar 

  31. Elnaggar RK, Abd El-Nabie WA (2021) Efficacy of aqua-based plyometric exercises in the rehabilitation of patients with juvenile dermatomyositis: a randomized crossover pilot study. Int J Rheum Dis 24(7):930–940

    Article  PubMed  Google Scholar 

  32. Madi SM, Al-Mayouf SM, Grainger CG, Bahabri SA (2004) The Arabic version of childhood health assessment questionnaire modified for Arabic children. Saudi Med J 25(1):83–87

    PubMed  Google Scholar 

  33. Pouchot J, Ecosse E, Coste J, Guillemin F (2004) Validity of the childhood health assessment questionnaire is independent of age in juvenile idiopathic arthritis. Arthritis Care Res 51(4):519–526

    Article  Google Scholar 

  34. Elnaggar RK, Mahmoud WS, Moawd SA, Azab AR (2021) Impact of core stability exercises on bone mineralization and functional capacity in children with polyarticular juvenile idiopathic arthritis: a randomized clinical trial. Clin Rheumatol 40(1):245–253

    Article  PubMed  Google Scholar 

  35. Rayegani SM, Bahrami MH, Elyaspour D, Saeedi M, Sanjari H (2012) Therapeutic effects of low level laser therapy [LLLT] in knee osteoarthritis, compared to therapeutic ultrasound. J Lasers Med Sci 3(2):71–74

    Google Scholar 

  36. Leal-Junior ECP, Vanin AA, Miranda EF, de Carvalho PdTC, Dal Corso S, Bjordal JM (2015) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci 30(2):925–39

    Article  PubMed  Google Scholar 

  37. Bjordal JM, Lopes-Martins RAB, Joensen J, Iversen VV (2010) The anti-inflammatory mechanism of low level laser therapy and its relevance for clinical use in physiotherapy. Phys Ther Rev 15(4):286–293

    Article  Google Scholar 

  38. Amano A, Miyagi K, Azuma T, Ishihara Y, Katsube S, Aoyama I et al (1994) Histological studies on the rheumatoid synovial membrane irradiated with a low energy laser. Lasers Surg Med 15(3):290–294

    Article  CAS  PubMed  Google Scholar 

  39. Junior ECPL, Lopes-Martins RÁB, de Almeida P, Ramos L, Iversen VV, Bjordal JM (2010) Effect of low-level laser therapy (GaAs 904 nm) in skeletal muscle fatigue and biochemical markers of muscle damage in rats. Eur J Appl Physiol 108(6):1083–1088

    Article  Google Scholar 

  40. de Brito Vieira WH, Ferraresi C, de Andrade Perez SE, Baldissera V, Parizotto NA (2012) Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers Med Sci 27(2):497–504

    Article  Google Scholar 

  41. Ferraresi C, de Brito OT, de Oliveira ZL, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE et al (2011) Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci 26(3):349–358

    Article  PubMed  Google Scholar 

  42. Junior ECPL, Lopes-Martins RÁB, Vanin AA, Baroni BM, Grosselli D, De Marchi T et al (2009) Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers Med Sci 24(3):425–431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragab K. Elnaggar.

Ethics declarations

Ethics approval

The protocol for this research was approved by the Physical Therapy Research Ethics Committee at Prince Sattam Bin Abdulaziz University and granted and authorization number (Protocol No: RHPT/18/027).

Informed consent

As a parent or legal guardian, I affirm that I have been completely informed about all study procedures that the child will participate in. I hereby willingly consent for my child to join in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elnaggar, R.K., Mahmoud, W.S., Abdelbasset, W.K. et al. Low-energy laser therapy application on knee joints as an auxiliary treatment in patients with polyarticular juvenile idiopathic arthritis: a dual-arm randomized clinical trial. Lasers Med Sci 37, 1737–1746 (2022). https://doi.org/10.1007/s10103-021-03427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03427-6

Keywords

Navigation