Skip to main content

Advertisement

Log in

Histology changes of in vivo human skin after treatment with fractional 1064 nm Nd:YAG picosecond laser in different energy settings

  • Brief Report
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

Nd:YAG:

Neodymium-doped yttrium aluminum garnet

MLA:

Micro-lens arrays

LIC:

Laser-induced cavitation

RBC:

Red blood cell

LIOB:

Laser-induced optical breakdown

FDA:

Food and Drug Administration

DLA:

Diffractive lens arrays

IL:

Interleukin

References

  1. Torbeck RL, Schilling L, Khorasani H, Dover JS, Arndt KA, Saedi N (2019) Evolution of the picosecond laser: a review of literature. Dermatol Surg 45:183–194. https://doi.org/10.1097/DSS.0000000000001697

    Article  CAS  PubMed  Google Scholar 

  2. Brauer JA, Kazlouskaya V, Alabdulrazzaq H, Bae YS, Bernstein LJ, Anolik R, Heller PA, Geronemus RG (2015) Use of a picosecond pulse duration laser with specialized optic for treatment of facial acne scarring. JAMA Dermatol 151:278–84. https://doi.org/10.1001/jamadermatol.2014.3045

    Article  PubMed  Google Scholar 

  3. Tanghetti EA (2016) The histology of skin treated with a picosecond Alexandrite laser and a fractional lens array. Lasers Surg Med 48:646–52. https://doi.org/10.1002/lsm.22540

    Article  PubMed  Google Scholar 

  4. Bernstein EF, Schomacker KT, Basilavecchio LD, Plugis JM, Bhawalkar JD (2017) Treatment of acne scarring with a novel fractionated, dual-wavelength, picosecond-domain laser incorporating a novel holographic beam-splitter. Lasers Surg Med 49:796–802. https://doi.org/10.1002/lsm.22734

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chayavichitsilp P, Limtong P, Triyangkulsri K, Pratumchart N (2019) Comparison of fractional neodymium-doped yttrium aluminum garnet (Nd:YAG) 1064-nm picosecond laser and fractional 1550-nm erbium fiber laser in facial acne scar treatment. Lasers Med Sci. https://doi.org/10.1007/s10103-019-02891-5

    Article  PubMed  Google Scholar 

  6. Dai YX, Chuang YY, Chen PY, Chen CC (2019) Efficacy and safety of ablative resurfacing with a high-energy 1,064 Nd-YAG picosecond-domain laser for the treatment of facial acne scars in Asians. Lasers Surg Med. https://doi.org/10.1002/lsm.23151

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang CS, Huang YL, Cheng CY, Hu S, Chang SL, Lee MC (2020) A prospective study of fractionated dual-wavelength picosecond laser in treating acne scar. Lasers Surg Med. https://doi.org/10.1002/lsm.23218

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chung HJ, Lee HC, Park J, Childs J, Hong J, Kim H, Cho SB (2019) Pattern analysis of 532- and 1064-nm microlens array-type, picosecond-domain laser-induced tissue reactions in ex vivo human skin. Lasers Med Sci 34:1207–1215. https://doi.org/10.1007/s10103-018-02711-2

    Article  PubMed  Google Scholar 

  9. Lee HC, Childs J, Chung HJ, Park J, Hong J, Cho SB (2019) Pattern analysis of 532- and 1,064-nm picosecond-domain laser-induced immediate tissue reactions in ex vivo pigmented micropig skin. Sci Rep 9:4186. https://doi.org/10.1038/s41598-019-41021-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lyu H, Park J, Lee HC, Lee SJ, Kim YK, Cho SB (2020) In vivo and ex vivo skin reactions after multiple pulses of 1,064-nm, microlens array-type, picosecond laser treatment. Med Lasers 9:142–149. https://doi.org/10.25289/ML.2020.9.2.142

    Article  Google Scholar 

  11. Konnor OC, Cho SB, Chung HJ (2021) Wound healing profile after 1064- and 532-nm picosecond lasers with microlens array of in vivo human skin. Lasers Surg Med. https://doi.org/10.1002/lsm.23390

    Article  Google Scholar 

  12. Tanghetti Md E, Jennings J (2018) A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic. Lasers Surg Med 50:37–44. https://doi.org/10.1002/lsm.22752

    Article  PubMed  Google Scholar 

  13. Varghese B, Bonito V, Jurna M, Palero J, Verhagen MH (2015) Influence of absorption induced thermal initiation pathway on irradiance threshold for laser induced breakdown. Biomed Opt Express 6:1234–40. https://doi.org/10.1364/BOE.6.001234

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uzunbajakava NE, Varghese B, Botchkareva N, Verhagen R, Vogel A (2018) Highlighting the nuances behind interaction of picosecond pulses with human skin: relating distinct laser-tissue interactions to their potential incutaneous interventions. Proc SPIE 10492:1049206. https://doi.org/10.1117/12.2307804

  15. Jang YH, Kim SL, Lee JS, Kwon K-Y, Lee S-J, Kim DW, Lee WJ (2014) Possible existence of melanocytes or melanoblasts in human sebaceous glands. Ann Dermatol 26:469–473

    Article  Google Scholar 

  16. Yeh YT, Peng JH, Peng P (2020) Histology of ex vivo skin after treatment with fractionated picosecond Nd:YAG laser in high and low-energy settings. J Cosmet Laser Ther 22:43–47. https://doi.org/10.1080/14764172.2019.1710536

    Article  PubMed  Google Scholar 

  17. Tanghetti E (2015) Characterization of the histologic changes in the skin from treatment with a 755 nm picosecond Alexandrite laser with a fractional optic. Lasers Surg Med 47:24–24

    Google Scholar 

  18. Vogel A, Busch S, Jungnickel K, Birngruber R (1994) Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg Med 15:32–43. https://doi.org/10.1002/lsm.1900150106

    Article  CAS  PubMed  Google Scholar 

  19. Makrantonaki E, Ganceviciene R, Zouboulis C (2011) An update on the role of the sebaceous gland in the pathogenesis of acne. Dermato-endocrinology 3:41–49. https://doi.org/10.4161/derm.3.1.13900

    Article  PubMed  PubMed Central  Google Scholar 

  20. Alestas T, Ganceviciene R, Fimmel S, Müller-Decker K, Zouboulis CC (2006) Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med 84:75–87. https://doi.org/10.1007/s00109-005-0715-8

    Article  CAS  PubMed  Google Scholar 

  21. Lloyd JR, Mirkov M (2002) Selective photothermolysis of the sebaceous glands for acne treatment. Lasers Surg Med 31:115–120. https://doi.org/10.1002/lsm.10080

    Article  PubMed  Google Scholar 

  22. Paithankar DY, Sakamoto FH, Farinelli WA, Kositratna G, Blomgren RD, Meyer TJ, Faupel LJ, Kauvar ANB, Lloyd JR, Cheung WL, Owczarek WD, Suwalska AM, Kochanska KB, Nawrocka AK, Paluchowska EB, Podolec KM, Pirowska MM, Wojas-Pelc AB, Anderson RR (2015) Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles. J Invest Dermatol 135:1727–1734. https://doi.org/10.1038/jid.2015.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yin-Shuo Chang, Ting-Hua Yang, and Chien-Nien Li. The first draft of the manuscript was written by Yin-Shuo Chang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chien-Nien Li.

Ethics declarations

Ethics approval

The research protocol was approved by Taipei Medical University Joint Institutional Review Board (approval number N202005107). The study protocol also conforms to the World Medical Association Declaration of Helsinki (June 1964) and its subsequent amendments.

Consent to participate

Written informed consent was obtained from the patients.

Consent for publication

Patients signed informed consent regarding publishing their data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YS., Yang, TH. & Li, CN. Histology changes of in vivo human skin after treatment with fractional 1064 nm Nd:YAG picosecond laser in different energy settings. Lasers Med Sci 37, 2087–2092 (2022). https://doi.org/10.1007/s10103-021-03396-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03396-w

Navigation