Skip to main content
Log in

Assessing the local temperature of human cornea exposed to surface ablation by different laser refractive-surgery devices: a numerical comparative study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

To evaluate the local temperature at corneal tissue after applying single laser pulse from six commercial devices; Medilex™, Katana laser-soft, MEL90, Technolas-Teneo317, Alcon EX500, and PulzarTMZ1. The temperature distribution is simulated using finite element solution of the Penne’s bio-heat transfer equation on a 3-D model of human cornea using the manufacturer’s assigning parameters. The obtained results showed that the heating effect of Katana laser soft is 40% lower than MEL90 and Pulzar™ Z1, while the broad beam Medilex™ showed the minimum temperature rise especially at 248-nm laser radiation. The change in laser parameters selected for ablation has significant effect on the corneal local temperature. The broad beam-based device produces lower local corneal temperature than other flying spot types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Willoughby CE, Ponzin D, Ferrari S et al (2010) Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clin Exp Ophthalmol 38:2–11. https://doi.org/10.1111/j.1442-9071.2010.02363.x

    Article  Google Scholar 

  2. Kane SN, Mishra A, Dutta AK (2017) Pulsed UV laser technologies for ophthalmic surgery. J Phys Conf Ser 793:1–12. https://doi.org/10.1088/1742-6596/755/1/011001

    Article  CAS  Google Scholar 

  3. Nagaraja H, Mehta JS, Zhou X et al (2019) Will SMILE become the new benchmark of corneal laser refractive surgery? Asia Pac J Ophthalmol 8:351–354. https://doi.org/10.1097/01.APO.0000579956.14784.91

    Article  Google Scholar 

  4. Pidro A, Biscevic A, Pjano MA et al (2019) Excimer lasers in refractive surgery. Acta Inform Med 27:278–283. https://doi.org/10.5455/aim.2019.27.278-283

    Article  PubMed  PubMed Central  Google Scholar 

  5. Azar DT, Koch DD (2003) LASIK : fundamentals, surgical techniques, and complications. Marcel Dekker, New York

  6. Markolf NH (2007) Laser-tissue interactions: fundamentals and applications. Springer, Germany

    Google Scholar 

  7. Yun SH, Kwok SJJ (2017) Light in diagnosis, therapy and surgery. Nat Biomed Eng 1:1–39. https://doi.org/10.1038/s41551-016-0008.Light

    Article  Google Scholar 

  8. Han SB, Liu YC, Mohamed-Noriega K, Mehta JS (2020) Application of femtosecond laser in anterior segment surgery. J Ophthalmol:1–12.https://doi.org/10.1155/2020/8263408

  9. Min JS, Min BM (2020) Comparison between surgical outcomes of LASIK with and without laser asymmetric keratectomy to avoid conventional laser refractive surgery adverse effects. Sci Rep 10:1–8. https://doi.org/10.1038/s41598-020-67269-y

    Article  CAS  Google Scholar 

  10. Shraiki M, Arba-mosquera S (2011) Simulation of the impact of refractive surgery ablative laser pulses with a flying-spot laser beam on intrasurgery corneal temperature. Invest Ophthalmol Vis Sci 52:3713–3722. https://doi.org/10.1167/iovs.10-6706

    Article  PubMed  Google Scholar 

  11. Sharma N, Vajpayee RB, Sullivan L (2005) Step by step LASIK surgery. CRC Press, New York

    Book  Google Scholar 

  12. Vossmerbaeumer SU (2010) Application principles of excimer lasers in ophthalmology. Med Laser Appl 25:250–257. https://doi.org/10.1016/j.mla.2010.08.004

    Article  Google Scholar 

  13. Krader CG (2019) Laser refractive surgery advances expand options for myopic patients. Ophthalmol Times 44:1–9

    Google Scholar 

  14. Ren Q, Simon G, Parel J, Ets-g L (1993) Ultraviolet solid-state laser (213-nm ) photorefractive keratectomy. Ophthalmology 100:1828–1834

    Article  CAS  Google Scholar 

  15. Lenzner M, Kittelmann O, Zatonski R et al (2003) Laser vision correction with an all-solid-state UV laser. OSA Trends Opt Photonics Ser 88:2197–2198. https://doi.org/10.1109/CLEO.2003.239080

    Article  Google Scholar 

  16. Shah S, Piovella M (2013) Solid-state laser platforms : two reviews the benefits of using the Pulzar Z1 and LaserSoft technologies. Cataract Refract Surg Today Eur 26–30

  17. Atezhev VV, Barchunov BV, Vartapetov SK, Zav AS (2016) Laser technologies in ophthalmic surgery. Laser Phys 26:84010. https://doi.org/10.1088/1054-660X/26/8/084010

    Article  Google Scholar 

  18. Tsiklis NS, Kymionis GD, Kounis GA et al (2007) One-year results of photorefractive keratectomy and laser in situ keratomileusis for myopia using a 213 nm wavelength solid-state laser. J Cataract Refract Surg 33:971–977. https://doi.org/10.1016/j.jcrs.2007.02.033

    Article  PubMed  Google Scholar 

  19. Taylor P, Brunsmann U, Sauer U et al (2010) Minimisation of the thermal load of the ablation in high-speed laser corneal refractive surgery : the intelligent thermal effect control of the AMARIS platform. J Mod Opt 57:466–479. https://doi.org/10.1080/09500341003710492

  20. Hamdy O, Alsharafi SS, Hassan MF et al (2019) A multi-spot laser system for retinal disorders treatment : experimental study. Opt - Int J Light Electron Opt 185:609–613. https://doi.org/10.1016/j.ijleo.2019.03.158

  21. de Ortueta D, Magnago T et al (2012) In vivo measurements of thermal load during ablation in high-speed laser corneal refractive surgery. J Refract Surg 28(1):53–58. https://doi.org/10.3928/1081597X-20110906-01

    Article  PubMed  Google Scholar 

  22. Betney S, Morgan PB, Doyle SJ, Efron N (1997) Corneal temperature changes during photorefractive keratectomy. Cornea 16:158–161

    CAS  PubMed  Google Scholar 

  23. De OD, Magnago T, Arba-mosquera S (2015) Thermodynamic measurement after cooling the cornea with intact epithelium and lid manipulation. J Optom 8:170–173. https://doi.org/10.1016/j.optom.2015.03.001

    Article  Google Scholar 

  24. Mrochen M, Schelling U, Wuellner C et al (2009) Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser. J Cart Refract Surg 35:738–746. https://doi.org/10.1016/j.jcrs.2008.12.034

    Article  Google Scholar 

  25. Cvetkovi M, Poljak D, Peratta A (2008) Thermal modelling of the human eye exposed to laser radiation. In: 16th International Conference on Software, Telecommunications and Computer Network. IEEE, pp 16–20

  26. Mirnezami SA, Jafarabadi MR, Abrishami M (2013) Temperature distribution simulation of the human eye exposed to laser radiation. Laser Med Sci 4:175–181

    Google Scholar 

  27. Joukar A, Nammakie E, Niroomand-oscuii H (2015) A comparative study of thermal effects of 3 types of laser in eye : 3D simulation with bioheat equation. J Therm Biol 49–50:74–81. https://doi.org/10.1016/j.jtherbio.2015.02.004

  28. Rahbar S, Shokooh-saremi M (2018) Mathematical modeling of laser linear thermal effects on the anterior layer of the human eye. Opt Laser Technol 99:72–80. https://doi.org/10.1016/j.optlastec.2017.09.033

    Article  CAS  Google Scholar 

  29. De OD, Arba-mosquera S, Magnago T (2019) High-speed recording of thermal load during laser trans-epithelial corneal refractive surgery using a 750 Hz ablation system. J Optom 12:84–91. https://doi.org/10.1016/j.optom.2018.05.002

    Article  Google Scholar 

  30. Abdelhalim I, Hamdy O, Ahmed A et al (2021) Dependence of the heating effect on tissue absorption coefficient during corneal reshaping using different UV lasers : a numerical study. Phys Eng Sci Med. https://doi.org/10.1007/s13246-021-00971-x

  31. Narasimhan A (2017) Heat and mass transfer processes in the eye. In: Kulacki F (ed) Handbook of thermal science and engineering. Springer, Cham

  32. Ng E, Tan JH, Acharya UR, Suri JS (2018) Human eye imaging and modeling. CRC Press, New York

    Google Scholar 

  33. Ophthalmic Excimer Laser System. http://www.laser.nsc.ru/opthalmic-excimer-laser-system/. Accessed 5 May 2020

  34. MEL 90 from ZEISS Advancing excimer laser technology.https://www.zeiss.com/content/dam/med/ref_international/products/refractive-lasers/excimerlasesolution/mel90/pdf/mel-90-broschuere-en-34–010–0004v.pdf. Accessed 5 May 2020. https://www.zeiss.com/meditec/int/product-portfolio/refractive-lasers/excimer-laser/mel-90.html. Accessed 5 May 2020

  35. The Future in Sight. http://www.customvis.com/sales/specs.php. Accessed 5 May 2020

  36. LaserSoft – UV Ablation Laser. http://katanalaser.com/products/lasersoft/. Accessed 5 May 2020

  37. http://www.spiritmedical.cz/uploads/pdf/technolas-teneo-317-m2.pdf. Accessed 1 April 2020

  38. https://www.dotmed.com/virtual-trade-show/category/Ophthalmology/Laser-__-Excimer/Models/Alcon/Wavelight-Ex500/16301. Accessed 1 April 2020

  39. Hamdy O, Mohammed HS (2020) Investigating the transmission profiles of 808 nm laser through different regions of the rat ’ s head. Lasers Med Sci. https://doi.org/10.1007/s10103-020-03098-9

    Article  PubMed  Google Scholar 

  40. Lembares A, Hu X, Kalmwf GW (1997) Absorption spectra of corneas in the far ultraviolet region. Invest Ophthalmol Vis Sci 38:1283–1287

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omnia Hamdy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhalim, I., Hamdy, O., Hassan, A.A. et al. Assessing the local temperature of human cornea exposed to surface ablation by different laser refractive-surgery devices: a numerical comparative study. Lasers Med Sci 36, 1725–1731 (2021). https://doi.org/10.1007/s10103-021-03347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03347-5

Keywords

Navigation