Skip to main content
Log in

Application of temporal correlation algorithm to interpret laser Doppler perfusion imaging

  • Letter to the Editor
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Essex TJ, Byrne PO (1991) A laser Doppler scanner for imaging blood flow in skin. J Biomed Eng 13(3):189–194

    Article  CAS  Google Scholar 

  2. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature (London) 254:56–58

    Article  CAS  Google Scholar 

  3. O’Doherty J, McNamara P, Clancy NT, Enfield JG, Leahy MJ (2009) Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration. J Biomed Opt 14(3):034025

    Article  Google Scholar 

  4. Briers JD (2001) Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging. Physiol Meas 22(4):R35–R36

    Article  CAS  Google Scholar 

  5. Stewart CJ, Frank R, Forrester KR, Tulip J, Lindsay R, Bray RC (2005) A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging. Burns 31:744–752

    Article  CAS  Google Scholar 

  6. Niazi ZBM, Essex TJH, Rapini R, Scott D, McLean NR, Black MJM (1993) New laser Doppler scanner, a valuable adjunct in burn depth assessment. Burns 19:485–489

    Article  CAS  Google Scholar 

  7. Pape SA, Skouras CA, Byrne PO (2001) An audit of the use of laser Doppler imaging (LDI) in the assessmentof burns of intermediate depth. Burns 27(7):233–239

    Article  CAS  Google Scholar 

  8. Kloppenberg FW, Beerthuizen GI, ten Duis HJ (2001) Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time. Burns 27:359–363

    Article  CAS  Google Scholar 

  9. Droog EJ, Steenbergen W, Sjoberg F (2001) Measurement of depth of burns by laser Doppler perfusion imaging. Burns 27:561–568

    Article  CAS  Google Scholar 

  10. Bray R, Forrester K, Leonard C, McArthur R, Tulip J, Lindsay R (2003) Laser Doppler imaging of burn scars: a comparison of wavelength and scanning methods. Burns 29:199–206

    Article  Google Scholar 

  11. La Hei E, Holland A, Martin H (2006) Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination. Burns 32:550–553

    Article  Google Scholar 

  12. Monstrey SM, Hoeksema H, Baker RD, Jeng J, Spence RS, Wilson D, Pape SA (2011) Burn wound healing time assessed by laser Doppler imaging. Part 2: validation of a dedicated colour code for image interpretation. Burns 37(2):249–256

    Article  CAS  Google Scholar 

  13. Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21:195–201

    Article  CAS  Google Scholar 

  14. de Mul FFM, Blaauw J, Aarnoudse JG, Smit AJ, Rakhorst G (2007) Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies. J Biomed Opt 12:14,032–1

    Google Scholar 

  15. Anderson ME et al (2004) Digital iontophoresis of vasoactive substances as measured by laser Doppler imaging: a non-invasive technique by which to measure microvascular dysfunction in Raynaud’s phenomenon. Rheumatology 43(8):986–991

    Article  CAS  Google Scholar 

  16. Muris DM, Houben AJ, Schram MT, Stehouwer CD (2013) Microvascular dysfunction: an emerging pathway in the pathogenesis of obesity-related insulin resistance. Rev Endocrinol Metab Disord 14(1):29–38

    Article  CAS  Google Scholar 

  17. Payette JR, Kohlenberg E, Leonardi L, Pabbies A, Kerr P, Liu K, Sowa MG (2005) Assessment of skin flaps using optically based methods for measuring blood flow and oxygenation. Reconstr Surg 115(2):539–546

    Article  Google Scholar 

  18. Grothusen JR, Schwartzman RJ (2011) Laser Doppler imaging: usefulness in chronic pain medicine. Pain Physician 14:491–498

    PubMed  Google Scholar 

  19. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci 97(7):3422–3427

    Article  CAS  Google Scholar 

  20. Ferraro B, Cruz YL, Baldwin M, Coppola D, Heller R (2010) Increased perfusion and angiogenesis in a hindlimb ischemia model with plasmid FGF-2 delivered by noninvasive electroporation. Gene Ther 17(6):763–769

    Article  CAS  Google Scholar 

  21. Broderick PA, Kolodny EH (2010) Biosensors for brain trauma and dual laser Doppler flowmetry: enoxaparin simultaneously reduces stroke-induced dopamine and blood flow while enhancing serotonin and blood flow in motor neurons of brain, in vivo. Sensors 11(1):138–161

    Article  Google Scholar 

  22. Draijer M, Hondebrink E, van Leeuwen T, Steenbergen W (2009) Twente Optical Perfusion Camera: system overview and performance for video rate laser Doppler perfusion imaging. Opt Express 17(5):3211

    Article  Google Scholar 

  23. Ansari MZ, Kang EJ, Manole MD, Dreier JP, Humeau-Heurtier A (2017) Monitoring microvascular perfusion variations with laser speckle contrast imaging using a view-based temporal template method. Microvasc Res 111:49–59

    Article  Google Scholar 

  24. Ansari MZ, Mujeeb A (2017) Application of motion history image (MHI) on dynamic fluorescent imaging for monitoring cerebral ischemia induced by occlusion of middle cerebral artery (MCA) in mouse brain. Biomed Spectrosc Imaging 6(3–4):135–142

    Article  CAS  Google Scholar 

  25. Nassif R, Abou Nader C, Pellen F, Le Brun G, Abboud M, Le Jeune B (2013) Retrieving controlled motion parameters using two speckle pattern analysis techniques: spatiotemporal correlation and the temporal history speckle pattern. Appl Opt 52:7564

    Article  Google Scholar 

  26. Abou Nader C, Pellen F, Roquefort P, Aubry T, Le Jeune B, Le Brun G, Abboud M (2016) Evaluation of low viscosity variations in fluids using temporal and spatial analysis of the speckle pattern. Opt Lett 41(11):2521

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to The Optical Society of America, USA, for granting permission to reuse the supplementary data (video) of reference [22].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Ansari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.Z., Mujeeb, A. Application of temporal correlation algorithm to interpret laser Doppler perfusion imaging. Lasers Med Sci 34, 1929–1933 (2019). https://doi.org/10.1007/s10103-019-02811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02811-7

Navigation