Skip to main content

Advertisement

Log in

Analysis of choroidal thickness in ocular hypertensive patients using enhanced depth imaging optical coherence tomography

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This study aimed to compare choroidal thickness between subjects with ocular hypertension (OHT) and normal individuals and explore factors affecting choroidal thickness. This study included 60 untreated newly diagnosed OHT eyes and 60 normal eyes. Choroidal thickness obtained from Cirrus HD-OCT was measured at different locations in the macular and peripapillary regions and compared between the two groups before and after adjusting for potential confounding variables. Regression analysis was performed to figure out factors influencing choroidal thickness. The macular choroidal thickness did not vary significantly between OHT patients and normal controls regardless of locations (all P > 0.05). The average peripapillary choroidal thickness was 167 ± 53 μm in OHT eyes and 185 ± 63 μm in the normal eyes; no significant differences were identified (P = 0.107). Only one of the locations in the temporal area in the OHT group demonstrated significantly thinner peripapillary choroidal thickness as compared to the normal group (P = 0.033). Age was the only significant factor affecting choroidal thickness on multivariate analysis regardless of locations (all P < 0.001). Choroidal thickness of the macular and peripapillary regions in OHT patients is not decreased significantly except one location in the temporal area of the optic disc when comparing with the normal subjects. Anatomic peripapillary choroidal thickness measurements with SD-OCT might be one more tool to track changes in OHT patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boey PY, Mansberger SL (2014) Ocular hypertension: an approach to assessment and management. Can J Ophthalmol 49:489–496. https://doi.org/10.1016/j.jcjo.2014.06.013

    Article  PubMed  Google Scholar 

  2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013.

    Article  PubMed  Google Scholar 

  3. Mottet B, Aptel F, Geiser M, Romanet JP, Chiquet C (2015) Vascular factors in glaucoma. J Fr Ophtalmol 38:983–995. https://doi.org/10.1016/j.jfo.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  4. Banitt M (2013) The choroid in glaucoma. Curr Opin Ophthalmol 24:125–129. https://doi.org/10.1097/ICU.0b013e32835d9245

    Article  PubMed  Google Scholar 

  5. Yannuzzi LA (2011) Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol 151:745–751. https://doi.org/10.1016/j.ajo.2011.01.043

    Article  PubMed  Google Scholar 

  6. Riva CE, Geiser M, Petrig BL (2010) Beijing 100193, PR China Ocular Blood Flow Research Association. Ocular blood flow assessment using continuous laser Doppler flowmetry. Acta Ophthalmol 88:622–629. https://doi.org/10.1111/j.1755-3768.2009.01621.x

    Article  PubMed  Google Scholar 

  7. De Moraes CG, Reis AS, Cavalcante AF, Sano ME, Susanna R Jr (2009) Choroidal expansion during the water drinking test. Graefes Arch Clin Exp Ophthalmol 247:385–389. https://doi.org/10.1007/s00417-008-0969-2

    Article  PubMed  Google Scholar 

  8. Spaide RF, Koizumi H, Pozonni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032

    Article  PubMed  Google Scholar 

  9. Adhi M, Duker JS (2013) Optical coherence tomography—current and future applications. Curr Opin Ophthalmol 24:213–221. https://doi.org/10.1097/ICU.0b013e32835f8bf8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park HY, Lee NY, Shin HY, Park CK (2014) Analysis of macular and peripapillary choroidal thickness in glaucoma patients by enhanced depth imaging optical coherence tomography. J Glaucoma 23:225–231. https://doi.org/10.1097/IJG.0000000000000045.

    PubMed  Google Scholar 

  11. Hosseini H, Nilforushan N, Moghimi S, Bitrian E, Riddle J, Lee GY, Caprioli J, Nouri-Mahdavi K (2014) Peripapillary and macular choroidal thickness in glaucoma. J Ophthalmic Vis Res 9:154–161

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim JW, Rhew JY, Choi KR (2014) Choroidal thickness in primary open-angle glaucoma using spectral-domain optical coherence tomography. J Korean Ophthalmol Soc 55:868–876

    Article  Google Scholar 

  13. Lin Z, Huang S, Xie B, Zhong Y (2016) Peripapillary choroidal thickness and open-angle glaucoma: a meta-analysis. J Ophthalmol. https://doi.org/10.1155/2016/5484568

  14. Grippo TM, Liu JHK, Zebardast N, Arnold TB, Moore GH, Weinreb RN (2013) Twenty-four-hour pattern of intraocular pressure in untreated patients with ocular hypertension. Invest Ophthalmol Vis Sci 54:512–517. https://doi.org/10.1167/ iovs.12-10709

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schrems-Hoesl LM, Schrems WA, Laemmer R, Horn FK, Juenemann AG, Kruse FE, Mardin CY (2014) Confocal laser scanning tomography to predict visual field conversion in patients with ocular hypertension and early glaucoma. J Glaucoma 25:371–376. https://doi.org/10.1097/IJG.0000000000000171.

    Article  Google Scholar 

  16. Vuong VS, Moisseiev E, Cunefare D, Farsiu S, Moshiri A, Yiu G (2016) Repeatability of choroidal thickness measurements on enhanced depth imaging OCT using different posterior boundaries. Am J Ophthalmol 169:104–112. https://doi.org/10.1016/j.ajo.2016.06.023

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gupta P, Jing T, Marziliano P, Baskaran M, Cheung GCM, Lamoureux EL, Cheung CY, Wong TY, Aung T, Cheng CY (2015) Peripapillary choroidal thickness assessed using automated choroidal segmentation software in an Asian population. Br J Ophthalmol 99:920–926. https://doi.org/10.1136/bjophthalmol-2014-306152

    Article  PubMed  Google Scholar 

  18. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y (2010) Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci 51:2173–2176. https://doi.org/10.1167/iovs.09-4383

    Article  PubMed  Google Scholar 

  19. Brandt JD, Gordon MO, Gao F, Beiser JA, Miller JP, Kass MA, Ocular Hypertension Treatment Study Group (2011) Adjusting intraocular pressure for central corneal thickness does not improve prediction models for primary open-angle glaucoma. Ophthalmology 119:437–442. https://doi.org/10.1016/j.ophtha.2011.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  20. Doughty MJ, Zaman ML (2000) Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol 44:367–408. https://doi.org/10.1016/S0039-6257(00)00110-7

    Article  CAS  PubMed  Google Scholar 

  21. Chua J, Tham YC, Liao J, Zheng Y, Aung T, Wong TY, Cheng CY (2014) Ethnic differences of intraocular pressure and central corneal thickness: the Singapore Epidemiology of Eye Diseases study. Ophthalmology 121:2013–2022. https://doi.org/10.1016/j.ophtha.2014.04.041.

    Article  PubMed  Google Scholar 

  22. Prum BE Jr, Lim MC, Mansberger SL, Stein JD, Moroi SE, Gedde SJ, Herndon LW Jr, Rosenberg LF, Williams RD (2016) Primary open-angle glaucoma suspect preferred practice pattern® guidelines. Ophthalmology 123:112–151. https://doi.org/10.1016/j.ophtha.2015.10.055

    Article  Google Scholar 

  23. Regatieri CV, Branchini L, Fujimoto JG, Duker JS (2012) Choroidal imaging using spectral-domain optical coherence tomography. Retina 32:865–876. https://doi.org/10.1097/IAE.0b013e318251a3a8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mrejen S, Spaide RF (2013) Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol 58:387–429. https://doi.org/10.1016/j.survophthal.2012.12.001

    Article  PubMed  Google Scholar 

  25. Manjunath V, Taha M, Fujimoto JG, Duker JS (2010) Choroidal thickness in normal eyes measured using Cirrus-HD optical coherence tomography. Am J Ophthalmol 150:325–329. https://doi.org/10.1016/j.ajo.2010.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ruiz-Medrano J, Flores-Moreno I, Peña-García P, Montero JA, Duker JS, Ruiz-Moreno JM (2014) Macular choroidal thickness profile in a healthy population measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 55:3532–3542. https://doi.org/10.1167/iovs.14-13868

    Article  PubMed  Google Scholar 

  27. Mwanza JC, Hochberg JT, Banitt MR, Feuer WJ, Budenz DL (2011) Lack of association between glaucoma and macular choroidal thickness measured with enhanced depth-imaging optical coherence tomography. Invest Ophthalmol Vis Sci 52:3430–3435. https://doi.org/10.1167/iovs.10-6600

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nakakura S, Yamamoto M, Terao E, Nagasawa T, Tabuchi H, Kiuchi Y (2014) The whole macular choroidal thickness in subjects with primary open angle glaucoma. PLoS One 9:e110265. https://doi.org/10.1371/journal.pone.0110265

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang W, Zhang X (2014) Choroidal thickness and primary open-angle glaucoma: a cross-sectional study and meta-analysis. Invest Ophthalmol Vis Sci 55:6007–6014. https://doi.org/10.1167/iovs.14-14996

    Article  PubMed  Google Scholar 

  30. Lamparter J, Schulze A, Riedel J, Wasielica-Poslednik J, König J, Pfeiffer N, Hoffmann EM (2015) Peripapillary choroidal thickness and choroidal area in glaucoma, ocular hypertension and healthy subjects by SD-OCT. Klin Monatsbl Augenheilkd 232:390–394. https://doi.org/10.1055/s-0035-1545819

    Article  CAS  PubMed  Google Scholar 

  31. Gupta P, Cheunga CY, Baskaran M, Tiand J, Marzilianod P, Lamoureux EL, Cheung CMG, Aung T, Wong TY, Cheng C-Y (2016) Relationship between peripapillary choroid and retinal nerve fiber layer thickness in a population-based sample of nonglaucomatous eyes. Am J Ophthalmol 161:4–11. https://doi.org/10.1016/j.ajo.2015.09.018

    Article  PubMed  Google Scholar 

  32. Sung KR, Kim S, Lee Y, Yun SC, Na JH (2011) Retinal nerve fiber layer normative classification by optical coherence tomography for prediction of future visual field loss. Invest Ophthalmol Vis Sci 52:2634–2639. https://doi.org/10.1167/iovs.10-6246

    Article  PubMed  Google Scholar 

  33. Maul EA, Friedman DS, Chang DS, Boland MV, Ramulu PY, Jampel HD, Quigley HA (2011) Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology 118:1571–1579. https://doi.org/10.1016/j.ophtha.2011.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Roberts KF, Artes PH, O’Leary N, Reis ASC, Sharpe GP, Hutchison DM, Chauhan BC, Nicolela MT (2012) Peripapillary choroidal thickness in healthy controls and patients with focal, diffuse, and sclerotic glaucomatous optic disc damage. Arch Ophthalmol 130:980–986. https://doi.org/10.1001/archophthalmol.2012.371

    Article  PubMed  Google Scholar 

  35. Fuchsjäger-Mayrl G, Wally B, Georgopoulos M, Rainer G, Kircher K, Buehl W, Amoako-Mensah T, Eichler H-G, Vass C, Schmetterer L (2004) Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45:834–839. https://doi.org/10.1167/iovs.03-0461

    Article  PubMed  Google Scholar 

  36. Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, Akiba M, Yoshimura N (2011) Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 52:4971–4978. https://doi.org/10.1167/iovs.11-7729

    Article  PubMed  Google Scholar 

  37. Mansouri K, Medeiros FA, Tatham AJ, Marchase N, Weinreb RN (2014) Evaluation of retinal and choroidal thickness by swept-source optical coherence tomography: repeatability and assessment of artifacts. Am J Ophthalmol 157:1022–1032. https://doi.org/10.1016/j.ajo.2014.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brown JS, Flitcroft DI, Ying GS, Francis EL, Schmid GF, Quinn GE, Stone RA (2009) In vivo human choroidal thickness measurements: evidence for diurnal fluctuations. Invest Ophthalmol Vis Sci 50:5–12. https://doi.org/10.1167/iovs.08-1779

    Article  PubMed  Google Scholar 

  39. Chakraborty R, Read SA, Collins MJ (2011) Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest Ophthalmol Vis Sci 52:5121–5129. https://doi.org/10.1167/iovs.11-7364

    Article  PubMed  Google Scholar 

  40. Tan CS, Ouyang Y, Ruiz H, Sadda SR (2012) Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:261–266. https://doi.org/10.1167/iovs.11-8782

    Article  PubMed  Google Scholar 

  41. Tan KA, Gupta P, Agarwal A, Chhablani J, Cheng CY, Keane PA, Agrawal R (2016) State of science: choroidal thickness and systemic health. Surv Ophthalmol 61:566–581. https://doi.org/10.1016/j.survophthal.2016.02.007

    Article  PubMed  Google Scholar 

Download references

Funding

Research reported in the article received no funding.

Author information

Authors and Affiliations

Authors

Contributions

ZJL and YSZ were involved in study design; ZJL and SYH performed the study; ZJL, PH, and LG took measurements and analyzed the data; ZJL drafted the manuscript; HJB and YSZ reviewed the manuscript.

Corresponding authors

Correspondence to Hongjun Bian or Yisheng Zhong.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

The design of the study was in compliance with the principles of the Declaration of Helsinki, and it was approved by the Ethics Committee of Ruijin Hospital, Shanghai Jiaotong University (Shanghai, China). A photocopy of the ethical approval is accessible in the supplementary materials.

Informed consent

Written consent forms were obtained for all the participants. A model translated in English could be accessed in the supplementary materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Huang, S., Huang, P. et al. Analysis of choroidal thickness in ocular hypertensive patients using enhanced depth imaging optical coherence tomography. Lasers Med Sci 33, 111–121 (2018). https://doi.org/10.1007/s10103-017-2349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2349-9

Keywords

Navigation