Skip to main content

Advertisement

Log in

Melanogenesis inhibition in mice using a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser: a pilot study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, or laser toning, has yielded favorable outcomes in various benign pigmented disorders. However, the exact mechanism of action of laser toning has not been fully elucidated. We sought to determine the inhibitory effect of laser toning on melanogenesis and to assess how laser passes influence the outcomes. To produce perceptible pigmentation, nine HRM-2 melanin-possessing hairless mice were treated with ultraviolet (UV) B radiation on the dorsal skin. This was followed by zero, two, four, or six passes of laser toning twice in 2 weeks on each designated quadrant. The spectrophotometric values and pigmentation-related protein expressions were measured. Pigment changes were found in the mice skin using the Fontana-Masson stain for histopathological analysis. Four- and six-pass laser toning significantly improved the lightness compared to that in the unirradiated control (p < 0.002). The Fontana-Masson stain showed that melanin was considerably decreased in laser-irradiated skin. As the number of laser passes increased, the expression of tyrosinase decreased (p < 0.008). The following parameters also decreased in proportion to the number of laser passes: MITF, TRP-1, TRP-2, p-ERK, and p-Akt. In contrast, TGF-β increased in proportion to the number of laser passes. However, the changes in these six proteins were not statistically significant. Our study demonstrates that laser toning improves skin pigmentation with increased number of passes in a dose-dependent manner. This effect is mediated by tyrosinase inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Halder RM, Nootheti PK (2003) Ethnic skin disorders overview. J Am Acad Dermatol 48(6 Suppl):S143–S148. doi:10.1067/mjd.2003.274

    Article  PubMed  Google Scholar 

  2. Ho SG, Chan HH (2009) The Asian dermatologic patient: review of common pigmentary disorders and cutaneous diseases. Am J Clin Dermatol 10(3):153–168. doi:10.2165/00128071-200910030-00002

    Article  PubMed  Google Scholar 

  3. Grimes P, Nordlund JJ, Pandya AG, Taylor S, Rendon M, Ortonne JP (2006) Increasing our understanding of pigmentary disorders. J Am Acad Dermatol 54(5 Suppl 2):S255–S261. doi:10.1016/j.jaad.2005.12.042

    Article  PubMed  Google Scholar 

  4. Korner A, Pawelek J (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217(4565):1163–1165

    Article  CAS  PubMed  Google Scholar 

  5. Mastore M, Kohler L, Nappi AJ (2005) Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J 272(10):2407–2415. doi:10.1111/j.1742-4658.2005.04661.x

    Article  CAS  PubMed  Google Scholar 

  6. Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, Takahashi K (2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc 6(1):99–104

    Article  CAS  PubMed  Google Scholar 

  7. Vachtenheim J, Borovansky J (2010) “Transcription physiology” of pigment formation in melanocytes: central role of MITF. Exp Dermatol 19(7):617–627. doi:10.1111/j.1600-0625.2009.01053.x

    Article  CAS  PubMed  Google Scholar 

  8. Busca R, Ballotti R (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13(2):60–69

    Article  CAS  PubMed  Google Scholar 

  9. Kim D-S, Park S-H, Park K-C (2004) Transforming growth factor-β1 decreases melanin synthesis via delayed extracellular signal-regulated kinase activation. Int J Biochem Cell Biol 36(8):1482–1491

    CAS  PubMed  Google Scholar 

  10. Oka M, Nagai H, Ando H, Fukunaga M, Matsumura M, Araki K, Ogawa W, Miki T, Sakaue M, Tsukamoto K (2000) Regulation of melanogenesis through phosphatidylinositol 3-kinase-Akt pathway in human G361 melanoma cells. J Invest Dermatol 115(4):699–703

    Article  CAS  PubMed  Google Scholar 

  11. Jang JY, Lee JH, Kang BW, Chung KT, Choi YH, Choi BT (2009) Dichloromethane fraction of Cimicifuga heracleifolia decreases the level of melanin synthesis by activating the ERK or AKT signaling pathway in B16F10 cells. Exp Dermatol 18(3):232–237. doi:10.1111/j.1600-0625.2008.00794.x

    Article  PubMed  Google Scholar 

  12. Lee HJ, Lee WJ, Chang SE, Lee GY (2015) Hesperidin, a popular antioxidant inhibits melanogenesis via Erk1/2 mediated MITF degradation. Int J Mol Sci 16(8):18384–18395. doi:10.3390/ijms160818384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DeHoratius DM, Dover JS (2007) Nonablative tissue remodeling and photorejuvenation. Clin Dermatol 25(5):474–479. doi:10.1016/j.clindermatol.2007.05.006

    Article  PubMed  Google Scholar 

  14. Alam M, Dover JS (2003) Nonablative laser and light therapy: an approach to patient and device selection. Skin Therapy Lett 8(4):4–7

    CAS  PubMed  Google Scholar 

  15. Choi CW, Kim HJ, Lee HJ, Kim YH, Kim WS (2014) Treatment of nevus of Ota using low fluence Q-switched Nd:YAG laser. Int J Dermatol 53(7):861–865. doi:10.1111/ijd.12085

    Article  PubMed  Google Scholar 

  16. Kim JH, Kim H, Park HC, Kim IH (2010) Subcellular selective photothermolysis of melanosomes in adult zebrafish skin following 1064-nm Q-switched Nd:YAG laser irradiation. J Invest Dermatol 130(9):2333–2335. doi:10.1038/jid.2010.129

    Article  CAS  PubMed  Google Scholar 

  17. Mun JY, Jeong SY, Kim JH, Han SS, Kim IH (2011) A low fluence Q-switched Nd:YAG laser modifies the 3D structure of melanocyte and ultrastructure of melanosome by subcellular-selective photothermolysis. J Electron Microsc 60(1):11–18. doi:10.1093/jmicro/dfq068

    Article  CAS  Google Scholar 

  18. Kim JE, Chang SE, Yeo UC, Haw S, Kim IH (2013) Histopathological study of the treatment of melasma lesions using a low-fluence Q-switched 1064-nm neodymium:yttrium-aluminium-garnet laser. Clin Exp Dermatol 38(2):167–171. doi:10.1111/j.1365-2230.2012.04473.x

    Article  CAS  PubMed  Google Scholar 

  19. Omi T, Yamashita R, Kawana S, Sato S, Naito Z (2012) Low fluence Q-switched Nd: YAG laser toning and Q-switched ruby laser in the treatment of melasma: a comparative split-face ultrastructural study. Laser therapy 21(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim HR, Ha JM, Park MS, Lee Y, Seo YJ, Kim CD, Lee JH, Im M (2015) A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminium garnet laser for the treatment of cafe-au-lait macules. J Am Acad Dermatol 73(3):477–483. doi:10.1016/j.jaad.2015.06.002

    Article  PubMed  Google Scholar 

  21. Alam M, Hsu TS, Dover JS, Wrone DA, Arndt KA (2003) Nonablative laser and light treatments: histology and tissue effects—a review. Lasers Surg Med 33(1):30–39. doi:10.1002/lsm.10195

    Article  PubMed  Google Scholar 

  22. Yun CY, You ST, Kim JH, Chung JH, Han SB, Shin EY, Kim EG (2015) p21-activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF and beta-catenin/MITF pathways. J Invest Dermatol 135(5):1385–1394. doi:10.1038/jid.2014.548

    Article  CAS  PubMed  Google Scholar 

  23. Cho SB, Kim JS, Kim MJ (2009) Melasma treatment in Korean women using a 1064-nm Q-switched Nd:YAG laser with low pulse energy. Clin Exp Dermatol 34(8):e847–e850. doi:10.1111/j.1365-2230.2009.03599.x

    Article  CAS  PubMed  Google Scholar 

  24. Anderson RR, Margolis RJ, Watenabe S, Flotte T, Hruza GJ, Dover JS (1989) Selective photothermolysis of cutaneous pigmentation by Q-switched Nd: YAG laser pulses at 1064, 532, and 355 nm. J Invest Dermatol 93(1):28–32. doi:10.1111/1523-1747.ep12277339

    Article  CAS  PubMed  Google Scholar 

  25. Major A, Brazzini B, Campolmi P, Bonan P, Mavilia L, Ghersetich I, Hercogova J, Lotti T (2001) Nd:YAG 1064 nm laser in the treatment of facial and leg telangiectasias. J Eur Acad Dermatol Venereol 15(6):559–565

    Article  CAS  PubMed  Google Scholar 

  26. Landau JM, Vergilis-Kalner I, Goldberg LH, Geronemus RG, Friedman PM (2011) Treatment of nevus of Ota in Fitzpatrick skin type VI with the 1064-nm QS Nd:YAG laser. Lasers Surg Med 43(2):65–67. doi:10.1002/lsm.21011

    Article  PubMed  Google Scholar 

  27. Seo HM, Choi CW, Kim WS (2015) Beneficial effects of early treatment of nevus of Ota with low-fluence 1064-nm Q-switched Nd:YAG laser. Dermatol Surg 41(1):142–148. doi:10.1097/dss.0000000000000212

    Article  CAS  PubMed  Google Scholar 

  28. Bennett NT, Schultz GS (1993) Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg 165(6):728–737

    Article  CAS  PubMed  Google Scholar 

  29. Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA (2009) Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol 9(4):447–453. doi:10.1016/j.coph.2009.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Safavi SM, Kazemi B, Esmaeili M, Fallah A, Modarresi A, Mir M (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23(3):331–335. doi:10.1007/s10103-007-0491-5

    Article  PubMed  Google Scholar 

  31. Choi W, Miyamura Y, Wolber R, Smuda C, Reinhold W, Liu H, Kolbe L, Hearing VJ (2010) Regulation of human skin pigmentation in situ by repetitive UV exposure: molecular characterization of responses to UVA and/or UVB. J Invest Dermatol 130(6):1685–1696. doi:10.1038/jid.2010.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oh CT, Lee D, Koo K, Lee J, Yoon HS, Choi YM, Kwon TR, Kim BJ (2014) Superoxide dismutase 1 inhibits alpha-melanocyte stimulating hormone and ultraviolet B-induced melanogenesis in murine skin. Ann Dermatol 26(6):681–687. doi:10.5021/ad.2014.26.6.681

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the following individuals for their help, without whose support this study would have never been completed: Yeon Hwa Yoo, M.D., whose task of drawing a figure was essential to this thesis; Han-Saem Kim, M.D., Ju-Yeon Choi, M.D., and Jae Yun Lim, M.D. for generously contributing their valuable time and effort to care for the experimental mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Serk Kim.

Ethics declarations

Funding

This study was done without financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals and human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

This article does not contain any studies with participants that should have informed consent.

Additional information

Jae-Hui Nam and Joon Hong Min contributed equally to this work.

Electronic supplementary material

Supplementary Fig. 1

Effects of laser toning on UVA- or UVB-induced pigmentation in human abdominal skin (n = 1). a The photographs indicate pigmentary changes following laser toning (left, before laser treatment; right, after completion of laser treatment). b Western blot results demonstrate altered expressions of MITF and tyrosinase in a dose-dependent manner in UVA-induced pigmentation. In contrast, there are ambiguous results with UVB-induced pigmentation (GIF 422 kb)

High resolution image (TIFF 1576 kb)

ESM 1

(GIF 293 kb)

High resolution image (TIFF 1631 kb)

Supplementary Table 1

Ultraviolet (UV) A and B irradiation and laser schedules in a human (n = 1) (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, JH., Min, J.H., Kim, WK. et al. Melanogenesis inhibition in mice using a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser: a pilot study. Lasers Med Sci 32, 1063–1069 (2017). https://doi.org/10.1007/s10103-017-2208-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2208-8

Keywords

Navigation