Skip to main content

Advertisement

Log in

Association of IgG immunoglobulin and subclasses level with the severity of chromoblastomycosis due to Fonsecaea pedrosoi and therapeutic response to itraconazole

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Chromoblastomycosis (CBM) is a chronic, suppurative, granulomatous mycosis of the skin and subcutaneous tissues. The aim of this study was to evaluate the association between IgG antibody levels and the severity of CBM and therapeutic response of patients to itraconazole. A longitudinal study was conducted in patients with CBM due to Fonsecaea pedrosoi and in healthy subjects with chromomycin skin test (CST)+. The dosage of anti-F. pedrosoi IgG antibody performed in 47 healthy individuals with CST+ showed positivity in 97.5 %, with an average titer of 2,109 [standard deviation (SD) + 3,676)] and a mean optical density (OD) of 1.174 (SD + 0.456), showing positive correlation with the induration area of the CST (mm2). The level of antibodies in 55 patients with CBM expressed in OD and titration showed that, before treatment, patients with severe disease had higher levels of IgG, IgG1, IgG2, and IgG3 when compared with moderate or mild disease (p < 0.05). According to the time of treatment, the mean antibody titers of IgG, IgG1, and IgG2 were reduced after treatment (p < 0.05). In the assessment of therapeutic response, there was reduction of IgG3 and IgG titers in patients with rapid response (p < 0.05) and IgG2 on rapid and intermediate response (p < 0.05). There was clear evidence of what are the risk factors for exposure to F. pedrosoi in the daily lives of these subjects, with prospects of preventive measures for the target population. The immunological analysis shows that the antibody anti-F. pedrosoi did not exhibit a protective role against infection caused by this agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Silva-Hutner M, Carrion AL (1975) Differential characteristics of the fungal agents of chromoblastomycosis. Mycoses 304:118–125

    Google Scholar 

  2. Uribe F, Zuluaga AI, Leon W, Restrepo A (1989) Histopathology of chromoblastomycosis. Mycopathologia 105:1–6

    Article  PubMed  CAS  Google Scholar 

  3. Alviano DS, Franzen AJ, Travassos LR, Holandino C, Rozental S, Ejzemberg R, Alviano CS, Rodrigues ML (2004) Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Infect Immun 72:229–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Nimrichter L, Barreto-Bergter E, Mendonça-Filho RR, Kneipp LF, Mazzi MT, Salve P, Farias SE, Wait R, Alviano CS, Rodrigues ML (2004) A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Microbes Infect 6:657–665

    Article  PubMed  CAS  Google Scholar 

  5. Hayakawa M, Ghosn EE, da Gloria Teixeria de Sousa M, Ferreira KS, Almeida SR (2006) Phagocytosis, production of nitric oxide and pro-inflammatory cytokines by macrophages in the presence of dematiaceous fungi that cause chromoblastomycosis. Scand J Immunol 64:382–387

    Article  PubMed  CAS  Google Scholar 

  6. Farbiarz SR, de Carvalho TU, Alviano C, de Souza W (1992) Inhibitory effect of melanin on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro. J Med Vet Mycol 30:265–273

    Article  PubMed  CAS  Google Scholar 

  7. Bocca AL, Brito PP, Figueiredo F, Tosta CE (2006) Inhibition of nitric oxide production by macrophages in chromoblastomycosis: a role for Fonsecaea pedrosoi melanin. Mycopathologia 161:195–203

    Article  PubMed  CAS  Google Scholar 

  8. Fuchs J, Pecher S (1992) Partial suppression of cell mediated immunity in chromoblastomycosis. Mycopathologia 119:73–76

    Article  PubMed  CAS  Google Scholar 

  9. Esterre P, Jahevitra M, Ramarcel E, Andriantsimahavandy A (1997) Evaluation of the ELISA technique for the diagnosis and the seroepidemiology of chromoblastomycosis. J Mycol Med 7(3):137–141

    Google Scholar 

  10. Carrión AL (1950) Chromoblastomycosis. Ann N Y Acad Sci 50:1255–1282

    Article  PubMed  Google Scholar 

  11. Queiroz-Telles F (1996) A cromoblastomicose no estado do Paraná: etiologia, epidemiologia, clínica e terapêutica com itraconazol. Thesis, Fundação Faculdade Federal de Ciências Médicas de Porto Alegre

  12. Queiroz-Telles F, Purim KS, Fillus JN, Bordignon GF, Lameira RP, Van Cutsem J, Cauwenbergh G (1992) Itraconazole in the treatment of chromoblastomycosis due to Fonsecaea pedrosoi. Int J Dermatol 31(11):805–812

    Article  PubMed  CAS  Google Scholar 

  13. Queiroz-Telles F, Esterre P, Perez-Blanco M, Vitale RG, Salgado CG, Bonifaz A (2009) Chromoblastomycosis: an overview of clinical manifestations, diagnosis and treatment. Med Mycol 47(1):3–15

    Article  PubMed  Google Scholar 

  14. de Oliveira LG (1969) Experiências com antígeno metílico e cromomicina no diagnóstico da cromomicose. Arq Cent Estud Fac Odontol UFMG (Belo Horiz) 6:253–260

    Google Scholar 

  15. Marques SG, de Maria Pedrozo e Silva C, Resende MA, Silva AAM, de Jesus Mendes Caldas A, Costa JML (2008) Detection of delayed hypersensitivity to Fonsecaea pedrosoi metabolic antigen (chromomycin). Jpn J Med Mycol 49:95–101

    Article  CAS  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  17. Motulsky H (2010) Intuitive biostatistics: a nonmathematical guide to statistical thinking. Oxford University Press, Oxford

    Google Scholar 

  18. Dixon DM, Cox R, Cutler J, Deepe G (1996) Researchers use molecular immunology and technology to combat fungal pathogens. ASM News 62:81–84

    Google Scholar 

  19. Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 4:1–23

    Article  PubMed  Google Scholar 

  20. Blanco JL, Garcia ME (2008) Immune response to fungal infections. Vet Immunol Immunopathol 125:47–70

    Article  PubMed  CAS  Google Scholar 

  21. Casadevall A, Feldmesser M, Pirofski LA (2002) Induced humoral immunity and vaccination against major human fungal pathogens. Curr Opin Microbiol 5:386–391

    Article  PubMed  CAS  Google Scholar 

  22. Polonelli L, Casadevall A, Han Y, Bernardis F, Kirkland TN, Matthews RC, Adriani D, Boccanera M, Burnie JP, Cassone A, Conti S, Cutler JE, Frazzi R, Gregory C, Hodgetts S, Illidge C, Magliani W, Rigg G, Santoni G (2000) The efficacy of acquired humoral and cellular immunity in the prevention and therapy of experimental fungal infections. Med Mycol 38(Suppl 1):281–292

    Article  PubMed  Google Scholar 

  23. Hohl TM, Rivera A, Pamer EG (2006) Immunity to fungi. Curr Opin Immunol 18:465–472

    Article  PubMed  CAS  Google Scholar 

  24. Baliña P, Bosa P, Negroni P, Quiroga M (1932) Un caso de chromoblastomicosis, autoctono de Argentina. Rev Argent Dermatol 16:369–379

    Google Scholar 

  25. Andriantsimahavandy A, Michel P, Rasolofonirina N, Roux J (1993) Apport de l’immunologie au diagnostic de la chromomycose a Madagascar. J Mycol Med 3:30–36

    Google Scholar 

  26. Romero H, Ferrara G, Pérez-Blanco M, Contreras I (1999) An ELISA test for the serodiagnosis of chromoblastomycosis caused by Cladophialophora carrionii. J Mycol Med 9:210–213

    Google Scholar 

  27. Esterre P, Jahevitra M, Andriantsimahavandy A (2000) Humoral immune response in chromoblastomycosis during and after therapy. Clin Diagn Lab Immunol 7(3):497–500

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Mazo Fávero Gimenes V, Da Glória de Souza M, Ferreira KS, Marques SG, Gonçalves AG, Vagner de Castro Lima Santos D, de Maria Pedroso e Silva C, Almeida SR (2005) Cytokines and lymphocyte proliferation in patients with different clinical forms of chromoblastomycosis. Microbes Infect 7:708–713

    Article  PubMed  Google Scholar 

  29. Clemons KV, Stevens DA (2001) Overview of host defense mechanisms in systemic mycoses and the basis for immunotherapy. Semin Respir Infect 16:60–66

    Article  PubMed  CAS  Google Scholar 

  30. Oberto-Perdigón L, Romero H, Pérez-Blanco M, Apitz-Castro R (2005) Inmunoanálisis enzimático (ELISA) en la evolución terapéutica de la cromoblastomicosis por Cladophialophora carrionii en el área endémica Del Estado Falcón, Venezuela. Rev Iberoam Micol 22:39–43

    Article  PubMed  Google Scholar 

  31. Baquero GF (1959) La intradermo-reaccion con antigeno de Hormodendrum pedrosoi. Bol Soc Cub Dermatol Sifil 16:90–94

    Google Scholar 

  32. Albornoz MB (1982) Estudio epidemiológico de una área endémica para cromomicosis en el estado Falcón. Investigação clínica. Mycopathologia 23:219–228

    Google Scholar 

  33. Celis J, Gamboa P, Molina N, Montoya C, Rodriguez D (1988) Estudio sobre la sensibilidad cutánea a antígenos de cromoblastomicosis en Medellin y Sahagún (Colombia). Rev Div Cien Salu Univ Del Norte 4:37–44

    Google Scholar 

  34. Villalba E, Yegres JF (1988) Detection of circulating antibodies in patients affected by chromoblastomycosis by Cladosporium carrionii using double immunodiffusion. Mycopathologia 102:17–19

    Article  PubMed  CAS  Google Scholar 

  35. Vidal MSM, de Castro LGM, Cavalcante SC, da Silva Lacaz C (2003) Immunoprecipitation techniques and ELISA in the detection of anti-Fonsecaea pedrosoi antibodies in chromoblastomycosis. Rev Inst Med Trop Sao Paulo 45(6):315–318

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), FAPEMA (Fundação de Amparo à Pesquisa do Estado do Maranhão), and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for the financial support.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. de Resende Stoianoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

e Silva de Azevedo, C.d.M.P., Bruña-Romero, O., Marques, S.G. et al. Association of IgG immunoglobulin and subclasses level with the severity of chromoblastomycosis due to Fonsecaea pedrosoi and therapeutic response to itraconazole. Eur J Clin Microbiol Infect Dis 33, 1791–1797 (2014). https://doi.org/10.1007/s10096-014-2138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2138-3

Keywords

Navigation