Skip to main content

Advertisement

Log in

Proteomic analysis of plasma from rheumatoid arthritis patients with mild cognitive impairment

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) patients may suffer from comorbid neuropsychiatric symptoms including mild cognitive impairment (MCI). Although comorbidity of MCI is common, there are currently no validated plasma biomarkers to aid MCI diagnosis. This study screened plasma from patients with RA with and without comorbid MCI to identify potential biomarkers useful in the differential diagnosis of comorbid MCI. Plasma samples were collected from patients with RA without comorbid MCI, with comorbid MCI, and from healthy controls. Plasma samples were examined by tandem mass tags (TMT) combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MSMS) to analyze protein expression. Differentially expressed proteins were identified by bioinformatics and validated by enzyme-linked immunosorbent assay (ELISA). A total of 746 reliable proteins and 158 differentially expressed proteins were identified. Fourteen patients with RA-MCI showed differential protein expression (six proteins upregulated and eight proteins downregulated) compared with those patients without MCI and with healthy controls. Bioinformatics analysis showed that the differentially expressed proteins were primarily involved in biological processes, such as cell adhesion, coagulation, apoptosis, and body fluid regulation. The results of the ELISA experiments, similar to those of the proteomic analysis, demonstrated that sonic hedgehog (SHH) was upregulated and serum paraoxonase (TTR) was downregulated in patients with RA-MCI. These results indicate that SHH and TTR may be candidate plasma biomarkers that could be used to distinguish patients with RA and comorbid MCI from those without comorbid MCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388(10055):2023–2038. https://doi.org/10.1016/S0140-6736(16)30173-8

    Article  PubMed  CAS  Google Scholar 

  2. Joaquim AF, Appenzeller S (2015) Neuropsychiatric manifestations in rheumatoid arthritis. Autoimmun Rev 14(12):1116–1122. https://doi.org/10.1016/j.autrev.2015.07.015

    Article  PubMed  Google Scholar 

  3. Simos P, Ktistaki G, Dimitraki G, Papastefanakis E, Kougkas N, Fanouriakis A, Gergianaki I, Bertsias G, Sidiropoulos P, Karademas EC (2016) Cognitive deficits early in the course of rheumatoid arthritis. J Clin Exp Neuropsychol 38(7):820–829. https://doi.org/10.1080/13803395.2016.1167173

    Article  PubMed  Google Scholar 

  4. Shin SY, Katz P, Wallhagen M, Julian L (2012) Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care Res (Hoboken) 64:1144–1150. https://doi.org/10.1002/acr.21683

    Article  Google Scholar 

  5. Hamed SA, Selim ZI, Elattar AM, Elserogy YM, Ahmed EA, Mohamed HO (2012) Assessment of biocorrelates for brain involvement in female patients with rheumatoid arthritis. Clin Rheumatol 31(1):123–132. https://doi.org/10.1007/s10067-011-1795-1

    Article  PubMed  Google Scholar 

  6. Shin SY, Julian L, Katz P (2013) The relationship between cognitive function and physical function in rheumatoid arthritis. J Rheumatol 40(3):236–243. https://doi.org/10.3899/jrheum.120871

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B (2006) Mild cognitive impairment. Lancet 367(9518):1262–1270. https://doi.org/10.1016/S0140-6736(06)68542-5

    Article  PubMed  Google Scholar 

  8. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256(3):240–246. https://doi.org/10.1111/j.1365-2796.2004.01380.x

    Article  PubMed  CAS  Google Scholar 

  9. Golob EJ, Irimajiri R, Starr A (2007) Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain 130(3):740–752. https://doi.org/10.1093/brain/awl375

    Article  PubMed  Google Scholar 

  10. Ravaglia G, Forti P, Montesi F, Lucicesare A, Pisacane N, Rietti E, Dalmonte E, Bianchin M, Mecocci P (2008) Mild cognitive impairment: epidemiology and dementia risk in an elderly Italian population. J Am Geriatr Soc 56(1):51–58. https://doi.org/10.1111/j.1532-5415.2007.01503.x

    Article  PubMed  Google Scholar 

  11. Janoutova J, Sery O, Hosak L, Janout V (2015) Is mild cognitive impairment a precursor of Alzheimer’s disease? Short review. Cent Eur J Public Health 23(4):365–367. https://doi.org/10.21101/cejph.a4414

    Article  PubMed  CAS  Google Scholar 

  12. Sanchez-Torres AM, Elosua MR, Lorente-Omenaca R, Moreno-Izco L, Peralta V, Ventura J, Cuesta MJ (2016) Using the cognitive assessment interview to screen cognitive impairment in psychosis. Eur Arch Psychiatry Clin Neurosci 266(7):629–637. https://doi.org/10.1007/s00406-016-0700-y

    Article  PubMed  Google Scholar 

  13. Trzepacz PT, Hochstetler H, Wang S, Walker B, Saykin AJ (2015) Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults. BMC Geriatr 15(1):107. https://doi.org/10.1186/s12877-015-0103-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CR, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581. https://doi.org/10.1002/art.27584

    Article  PubMed  Google Scholar 

  15. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  16. Pincus T, Summey JA, Soraci SJ, Wallston KA, Hummon NP (1983) Assessment of patient satisfaction in activities of daily living using a modified Stanford Health Assessment Questionnaire. Arthritis Rheum 26(11):1346–1353. https://doi.org/10.1002/art.1780261107

    Article  PubMed  CAS  Google Scholar 

  17. Kroenke K, Spitzer RL, Williams JB (2001) The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med 16(9):606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166(10):1092–1097. https://doi.org/10.1001/archinte.166.10.1092

    Article  PubMed  Google Scholar 

  19. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7

    Article  PubMed  CAS  Google Scholar 

  20. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333. https://doi.org/10.1002/elps.200305844

    Article  PubMed  CAS  Google Scholar 

  21. Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA (2015) Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin Appl 9(3-4):295–300. https://doi.org/10.1002/prca.201400120

    Article  PubMed  CAS  Google Scholar 

  22. Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA (2015) Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin Appl 9(3-4):295–300. https://doi.org/10.1002/prca.201400120

    Article  PubMed  CAS  Google Scholar 

  23. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904. https://doi.org/10.1021/ac0262560

    Article  PubMed  CAS  Google Scholar 

  24. Dayon L, Sanchez JC (2012) Relative protein quantification by MS/MS using the tandem mass tag technology. Methods Mol Biol 893:115–127. https://doi.org/10.1007/978-1-61779-885-6_9

    Article  PubMed  CAS  Google Scholar 

  25. Hung CW, Tholey A (2012) Tandem mass tag protein labeling for top-down identification and quantification. Anal Chem 84(1):161–170. https://doi.org/10.1021/ac202243r

    Article  PubMed  CAS  Google Scholar 

  26. Ferraccioli G, Carbonella A, Gremese E, Alivernini S (2012) Rheumatoid arthritis and Alzheimer’s disease: genetic and epigenetic links in inflammatory regulation. Discov Med 14(79):379–388

    PubMed  Google Scholar 

  27. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16(6):358–372. https://doi.org/10.1038/nrn3880

    Article  PubMed  CAS  Google Scholar 

  28. Yokoyama JS, Wang Y, Schork AJ, Thompson WK, Karch CM, Cruchaga C, McEvoy LK, Witoelar A, Chen CH, Holland D, Brewer JB, Franke A, Dillon WP, Wilson DM, Mukherjee P, Hess CP, Miller Z, Bonham LW, Shen J, Rabinovici GD, Rosen HJ, Miller BL, Hyman BT, Schellenberg GD, Karlsen TH, Andreassen OA, Dale AM, Desikan RS (2016) Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol 73(6):691–697. https://doi.org/10.1001/jamaneurol.2016.0150

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takagi M, Ishigaki Y, Uno K, Sawada S, Imai J, Kaneko K, Hasegawa Y, Yamada T, Tokita A, Iseki K, Kanno S, Nishio Y, Katagiri H, Mori E (2013) Cognitive dysfunction associated with anti-glutamic acid decarboxylase autoimmunity: a case-control study. BMC Neurol 13(1):76. https://doi.org/10.1186/1471-2377-13-76

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huehnchen P, Prozorovski T, Klaissle P, Lesemann A, Ingwersen J, Wolf SA, Kupsch A, Aktas O, Steiner B (2011) Modulation of adult hippocampal neurogenesis during myelin-directed autoimmune neuroinflammation. Glia 59(1):132–142. https://doi.org/10.1002/glia.21082

    Article  PubMed  Google Scholar 

  31. Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M (1999) Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 11(9):3199–3214. https://doi.org/10.1046/j.1460-9568.1999.00777.x

    Article  PubMed  CAS  Google Scholar 

  32. Wang M, Zhu S, Peng W, Li Q, Li Z, Luo M, Feng X, Lin Z, Huang J (2014) Sonic hedgehog signaling drives proliferation of synoviocytes in rheumatoid arthritis: a possible novel therapeutic target. J Immunol Res 2014:401903–401910. https://doi.org/10.1155/2014/401903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bouslama-Oueghlani L, Wehrle R, Doulazmi M, Chen XR, Jaudon F, Lemaigre-Dubreuil Y, Rivals I, Sotelo C, Dusart I (2012) Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of sonic hedgehog and vitronectin. PLoS One 7(11):e49015. https://doi.org/10.1371/journal.pone.0049015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pitter KL, Tamagno I, Feng X, Ghosal K, Amankulor N, Holland EC, Hambardzumyan D (2014) The SHH/Gli pathway is reactivated in reactive glia and drives proliferation in response to neurodegeneration-induced lesions. Glia 62(10):1595–1607. https://doi.org/10.1002/glia.22702

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xu Q, Yuan X, Liu G, Black KL, JS Y (2008) Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 26(12):3018–3026. https://doi.org/10.1634/stemcells.2008-0459

    Article  PubMed  CAS  Google Scholar 

  36. Saelices L, Johnson LM, Liang WY, Sawaya MR, Cascio D, Ruchala P, Whitelegge J, Jiang L, Riek R, Eisenberg DS (2015) Uncovering the mechanism of aggregation of human transthyretin. J Biol Chem 290(48):28932–28943. https://doi.org/10.1074/jbc.M115.659912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Li X, Buxbaum JN (2011) Transthyretin and the brain re-visited: is neuronal synthesis of transthyretin protective in Alzheimer's disease? Mol Neurodegener 6(1):79. https://doi.org/10.1186/1750-1326-6-79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Bradley-Whitman MA, Abner E, Lynn BC, Lovell MA (2015) A novel plasma based biomarker of Alzheimer’s disease. J Alzheimers Dis 47(3):761–771. https://doi.org/10.3233/JAD-150183

    Article  PubMed  CAS  Google Scholar 

  39. Hye A, Riddoch-Contreras J, Baird AL, Ashton NJ, Bazenet C, Leung R, Westman E, Simmons A, Dobson R, Sattlecker M, Lupton M, Lunnon K, Keohane A, Ward M, Pike I, Zucht HD, Pepin D, Zheng W, Tunnicliffe A, Richardson J, Gauthier S, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S (2014) Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 10(6):799–807. https://doi.org/10.1016/j.jalz.2014.05.1749

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ribeiro CA, Santana I, Oliveira C, Baldeiras I, Moreira J, Saraiva MJ, Cardoso I (2012) Transthyretin decrease in plasma of MCI and AD patients: investigation of mechanisms for disease modulation. Curr Alzheimer Res 9(8):881–889. https://doi.org/10.2174/156720512803251057

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ya-Lan Zhang for help with the neuropsychological tests and Hong Wu and Qing-Xia You for their help collecting plasma samples. We also would like to thank Editage [www.editage.cn] for English language editing, and all the subjects and their families who agreed to participate in our research.

Funding

This study was supported by the General Program of National Natural Science Foundation of China (81373180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Fei Fang.

Ethics declarations

The study was approved by the Ethics Committee of the First Affiliated Hospital of the Third Military Medical University and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All subjects gave their informed consent.

Disclosures

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zou, QH., Zhang, Y. et al. Proteomic analysis of plasma from rheumatoid arthritis patients with mild cognitive impairment. Clin Rheumatol 37, 1773–1782 (2018). https://doi.org/10.1007/s10067-017-3974-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-017-3974-1

Keywords

Navigation