Skip to main content
Log in

Revisiting vimentin: a negative surrogate marker of molecularly defined oligodendroglioma in adult type diffuse glioma

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Vimentin is a marker of epithelial-mesenchymal transformation and indicates poor prognosis in various cancers, but its role in diffuse gliomas remains unknown. We investigated the vimentin expression of diffuse gliomas according to the upcoming 2021 WHO classification, its variations due to mutational status, and its prognostic effects. We analyzed vimentin immunohistochemistry in 315 gliomas: a test set (n = 164) and a validation set (n = 151). RNA-seq and mutational information from The Cancer Genome Atlas (TCGA, n = 422) were also used for validation. Vimentin was diffusely positive in astrocytic tumors but negative in oligodendroglial tumors (ODGs) and its expression was significantly higher in isocitrate dehydrogenase (IDH) wild-type tumors. High vimentin expression was correlated with poor prognosis (hazard ratio [HR]: 5.99), but it was dependent on the new WHO grade which reflects both histologic features and genetics (HR: 1.28). Using the significant difference in vimentin expression between ODGs and astrocytic tumors, the positive and negative predictive values of the vimentin-based diagnosis for ODGs were 93.5% and 97.8% in the validation set. Along with additional alpha-thalassemia/mental retardation, X-linked (ATRX) immunohistostaining, the values were 98.3% and 97.8%, respectively. Vimentin is a useful ancillary marker for identifying ODGs when combined with routine histochemistry markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563. https://doi.org/10.1016/j.cell.2015.12.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  3. Louis DN, Wesseling P, Aldape K et al (2020) cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol Zurich Switz 30:844–856. https://doi.org/10.1111/bpa.12832

    Article  Google Scholar 

  4. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173. https://doi.org/10.1016/j.ccr.2006.02.019

    Article  CAS  PubMed  Google Scholar 

  5. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Behnan J, Finocchiaro G, Hanna G (2019) The landscape of the mesenchymal signature in brain tumours. Brain J Neurol 142:847–866. https://doi.org/10.1093/brain/awz044

    Article  Google Scholar 

  7. Abaza MS, Shaban F, Narayan RK, Atassi MZ (1998) Human glioma associated intermediate filament proteins: over-expression, co-localization and cross-reactivity. Anticancer Res 18:1333–1340

    CAS  PubMed  Google Scholar 

  8. Andersson D, Wilhelmsson U, Nilsson M et al (2013) Plasticity response in the contralesional hemisphere after subtle neurotrauma: gene expression profiling after partial deafferentation of the hippocampus. PLoS ONE 8:e70699. https://doi.org/10.1371/journal.pone.0070699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hutchins JB, Casagrande VA (1989) Vimentin: changes in distribution during brain development. Glia 2:55–66. https://doi.org/10.1002/glia.440020107

    Article  CAS  PubMed  Google Scholar 

  10. Herpers MJ, Ramaekers FC, Aldeweireldt J et al (1986) Co-expression of glial fibrillary acidic protein- and vimentin-type intermediate filaments in human astrocytomas. Acta Neuropathol (Berl) 70:333–339. https://doi.org/10.1007/BF00686093

    Article  CAS  Google Scholar 

  11. Kang YH, Han SR, Jeon H et al (2019) Nogo receptor–vimentin interaction: a novel mechanism for the invasive activity of glioblastoma multiforme. Exp Mol Med 51:1–15. https://doi.org/10.1038/s12276-019-0332-1

    Article  CAS  PubMed  Google Scholar 

  12. Nowicki MO, Hayes JL, Chiocca EA, Lawler SE (2019) Proteomic analysis implicates vimentin in glioblastoma cell migration. Cancers 11:466. https://doi.org/10.3390/cancers11040466

    Article  CAS  PubMed Central  Google Scholar 

  13. Nakopoulou L, Kerezoudi E, Thomaides T, Litsios B (1990) An immunocytochemical comparison of glial fibrillary acidic protein, S-100p and vimentin in human glial tumors. J Neurooncol 8:33–40. https://doi.org/10.1007/BF00182084

    Article  CAS  PubMed  Google Scholar 

  14. Dehghani F, Schachenmayr W, Laun A, Korf HW (1998) Prognostic implication of histopathological, immunohistochemical and clinical features of oligodendrogliomas: a study of 89 cases. Acta Neuropathol (Berl) 95:493–504. https://doi.org/10.1007/s004010050830

    Article  CAS  Google Scholar 

  15. Lin L, Wang G, Ming J et al (2016) Analysis of expression and prognostic significance of vimentin and the response to temozolomide in glioma patients. Tumour Biol J Int Soc Oncodevelopmental Biol Med 37:15333–15339. https://doi.org/10.1007/s13277-016-5462-7

    Article  CAS  Google Scholar 

  16. Lassman AB, Roberts-Rapp L, Sokolova I et al (2019) Comparison of biomarker assays for EGFR: implications for precision medicine in patients with glioblastoma. Clin Cancer Res 25:3259–3265. https://doi.org/10.1158/1078-0432.CCR-18-3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pirker R, Pereira JR, von Pawel J et al (2012) EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol 13:33–42. https://doi.org/10.1016/S1470-2045(11)70318-7

    Article  CAS  PubMed  Google Scholar 

  18. Santosh N, McNamara KK, Beck FM, Kalmar JR (2019) Expression of cornulin in oral premalignant lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 127:526–534. https://doi.org/10.1016/j.oooo.2019.02.003

    Article  PubMed  Google Scholar 

  19. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  20. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weller M, van den Bent M, Tonn JC et al (2017) European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–e329. https://doi.org/10.1016/S1470-2045(17)30194-8

    Article  PubMed  Google Scholar 

  22. Koperek O, Gelpi E, Birner P et al (2004) Value and limits of immunohistochemistry in differential diagnosis of clear cell primary brain tumors. Acta Neuropathol (Berl) 108:24–30. https://doi.org/10.1007/s00401-004-0856-9

    Article  Google Scholar 

  23. Herpers MJ, Budka H (1984) Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors: gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendroglioma. Acta Neuropathol (Berl) 64:265–272. https://doi.org/10.1007/BF00690392

    Article  CAS  Google Scholar 

  24. Reuss DE, Sahm F, Schrimpf D et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol (Berl) 129:133–146. https://doi.org/10.1007/s00401-014-1370-3

    Article  CAS  Google Scholar 

  25. Gillet E, Alentorn A, Doukouré B et al (2014) TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 118:131–139. https://doi.org/10.1007/s11060-014-1407-4

    Article  CAS  PubMed  Google Scholar 

  26. Gomes FC, Paulin D, Moura Neto V (1999) Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res Rev Bras Pesqui Medicas Biol 32:619–631. https://doi.org/10.1590/s0100-879x1999000500016

    Article  CAS  Google Scholar 

  27. Louis DN (2009) Non-neoplastic diseases of the central nervous system. American Registry of Pathology, Washington, DC

    Google Scholar 

  28. Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci CMLS 68:3033–3046. https://doi.org/10.1007/s00018-011-0735-1

    Article  CAS  PubMed  Google Scholar 

  29. Zhao J, Zhang L, Dong X et al (2018) High expression of vimentin is associated with progression and a poor outcome in glioblastoma. Appl Immunohistochem Mol Morphol 26:337–344. https://doi.org/10.1097/PAI.0000000000000420

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Hu B, Hu X et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32:42-56.e6. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhat KPL, Balasubramaniyan V, Vaillant B et al (2013) Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346. https://doi.org/10.1016/j.ccr.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  32. Fedele V, Dai F, Masilamani AP et al (2017) Epigenetic regulation of ZBTB18 promotes glioblastoma progression. Mol Cancer Res MCR 15:998–1011. https://doi.org/10.1158/1541-7786.MCR-16-0494

    Article  CAS  PubMed  Google Scholar 

  33. Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450. https://doi.org/10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ellison DW, Hawkins C, Jones DTW et al (2019) cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAFV600E mutation. Acta Neuropathol (Berl) 137:683–687. https://doi.org/10.1007/s00401-019-01987-0

    Article  CAS  Google Scholar 

  35. Ebrahimi A, Skardelly M, Bonzheim I et al (2016) ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun 4:60. https://doi.org/10.1186/s40478-016-0331-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health and Welfare, Republic of Korea [grant no. HI14C1277] and the National Cancer Center, Republic of Korea (NCC-1810861-1).

Author information

Authors and Affiliations

Authors

Contributions

J-KW and S-HP designed the study. J-KW, S-IK, and S-HP reviewed histologic slides, drew annotations and acquired data for qualitative analysis. KL acquired data for quantitative analysis using positive pixel count v9 algorithm. C-KP and SHC carried out acquisition and analysis of clinical data. SL and HY acquired data from targeted brain tumor-related gene panel sequencing. S-IK and KL performed statistical analysis. S-IK, KL, JB, SL, HY, S-HP, and J-KW wrote the manuscript. All authors reviewed and edited the final manuscript.

Corresponding author

Correspondence to Jae-Kyung Won.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2294 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SI., Lee, K., Bae, J. et al. Revisiting vimentin: a negative surrogate marker of molecularly defined oligodendroglioma in adult type diffuse glioma. Brain Tumor Pathol 38, 271–282 (2021). https://doi.org/10.1007/s10014-021-00411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-021-00411-4

Keywords

Navigation