Skip to main content

Advertisement

Log in

Double dye technique and fluid filtration test to evaluate early sealing ability of an endodontic sealer

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The aim of the present study is to evaluate the possible correlation between sealer penetration into dentinal tubules and sealing ability both in presence and absence of smear layer.

Materials and methods

Fourteen maxillary central incisors were treated with 5.25 % NaOCl +10 % EDTA to remove the smear layer (SL-free group) or 5.25 % NaOCl without EDTA (SL group). Root canals were filled using #25 Thermafil Obturators with Topseal sealer labelled with 0.1 wt% rhodamine B. Sealing ability was measured as fluid filtration rate with a fluid-flow meter using water supplemented with 0.3 % calcein fluorescent dye. Specimens were sectioned, observed under confocal microscope to co-localize the presence of sealer (rhodamine B labelling) into dentinal tubules and gaps (calcein labelling) into the root canal. The depth of sealer penetration into dentinal tubules and the percentage of sealer penetration around the root canal were measured at 3, 5 and 8 mm from the apex.

Results

No significant differences between groups were observed in fluid filtration rate nor in depth of calcein penetration. Sealer penetration depth and percentage into dentinal tubules were not significantly different between groups, except at 8-mm level in absence of smear layer.

Conclusion

Sealer penetration at 3- and 5-mm levels was not influenced by smear layer while it was significantly reduced at 8-mm level. Fluid filtration rate was not correlated either with depth of calcein penetration nor with sealer penetration into dentinal tubules.

Clinical relevance

The sealing ability of Topseal sealer is not affected by presence or absence of smear layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mamootil K, Messer HH (2007) Penetration of dentinal tubules by endodontic sealer cements in extracted teeth and in vivo. Int Endod J 40:873–881

    Article  PubMed  Google Scholar 

  2. Torabinejad M, Ung B, Kettering JD (1990) In vitro bacterial penetration of coronally unsealed endodontically treated teeth. J Endod 16:566–569

    Article  PubMed  Google Scholar 

  3. Trope M, Chow E, Nissan R (1995) In vitro endotoxin penetration of coronally unsealed endodontically treated teeth. Endod Dent Traumatol 11:90–94

    Article  PubMed  Google Scholar 

  4. Ardizzoni A, Generali L, Righi E, et al. (2014) Differential efficacy of endodontic obturation procedures: an ex vivo study. Odontology 102:223–231

    Article  PubMed  Google Scholar 

  5. Gandolfi MG, Parrilli AP, Fini M, Prati C, Dummer PM (2013) 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH Plus or a flowable MTA sealer. Int Endod J 46:253–263

    Article  PubMed  Google Scholar 

  6. Foschi F, Nucci C, Montebugnoli L, et al. (2004) SEM evaluation of canal wall dentine following use of Mtwo and ProTaper NiTi rotary instruments. Int Endod J 37:832–839

    Article  PubMed  Google Scholar 

  7. Prati C, Foschi F, Nucci C, Montebugnoli L, Marchionni S (2004) Appearance of the root canal walls after preparation with NiTi rotary instruments: a comparative SEM investigation. Clin Oral Invest 8:102–110

    Article  Google Scholar 

  8. Gharib SR, Tordik PA, Imamura GM, Baginski TA, Goodell GG (2007) A confocal laser scanning microscope investigation of the Ephiphany obturation system. J Endod 33:957–961

    Article  PubMed  Google Scholar 

  9. Balguerie E, van der Sluis L, Vallaeys K, Gurgel-Georgelin M, Diemer F (2011) Sealer penetration and adaptation in the dentinal tubules: a scanning electron microscopic study. J Endod 37:1576–1579

    Article  PubMed  Google Scholar 

  10. Kara Tuncer A, Tuncer S (2012) Effect of different final irrigation solutions on dentinal tubule penetration depth and percentage of root canal sealer. J Endod 38:860–863

    Article  PubMed  Google Scholar 

  11. Bolles JA, He J, Svoboda KKH, Schneiderman E, Glickman GN (2013) Comparison of vibringe, endoactivator and needle irrigation on sealer penetration in extracted human teeth. J Endod 39:708–711

    Article  PubMed  Google Scholar 

  12. Kuçj A, Alaçam T, Yavaş O, Ergul-Ulger Z, Kayaoglu G (2014) Sealer penetration into dentinal tubules in the presence or absence of smear layer: a confocal laser scanning microscopic study. J Endod 40:1627–1631

    Article  Google Scholar 

  13. White RR, Goldman M, Lin PS (1984) The influence of the smear layer upon dentinal tubule penetration by plastic filling materials. J Endod 10:558–562

    Article  PubMed  Google Scholar 

  14. Çalt S, Serper A (1999) Dentinal tubule penetration of root canal sealers after root canal dressing with calcium hydroxide. J Endod 25:431–433

    Article  PubMed  Google Scholar 

  15. Patel DV, Sherriff M, Ford TR, et al. (2007) The penetration of RealSeal primer and Tubliseal into root canal dentinal tubules: a confocal microscopic study. Int Endod J 40:67–71

    Article  PubMed  Google Scholar 

  16. Ordinola-Zapata R, Bramante CM, Bernardineli N, et al. (2009) A preliminary study of the percentage of sealer penetration in roots obturated with the Thermafil and RealSeal-1 obturation techniques in mesial root canals of mandibular molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:961–968

  17. Şen BH, Pişkin B, Baran N (1996) The effect of tubular penetration of root canal sealers on dye microleakage. Int Endod J 29:23–28

    Article  PubMed  Google Scholar 

  18. Engel GT, Goodell GG, McClanahan SB (2005) Sealer penetration and apical microleakage in smear-free dentin after a final rinse with either 70 % isopropyl alcohol or Peridex. J Endod 31:620–623

    Article  PubMed  Google Scholar 

  19. Stevens RW, Strother JM, Mcclanahan SB (2006) Leakage and sealer penetration in smear-free dentin after a final rinse with 95 % ethanol. J Endod 32:785–788

    Article  PubMed  Google Scholar 

  20. De Deus G, Brandão MC, Leal F, et al. (2012) Lack of correlation between sealer penetration into dentinal tubules and sealability in nonbonded root fillings. Int Endod J 45:642–651

    Article  PubMed  Google Scholar 

  21. Machado R, Silva Neto UX, Cameiro E, Fariniuk LF, Westphalen VPD, Cunha RS (2014) Lack of correlation between tubular dentine cement penetration, adhesiveness and leakage in roots filled with gutta percha and an endodontic cement based on epoxy amine resin. J Appl Oral Sci 22:22–28

    Article  PubMed  PubMed Central  Google Scholar 

  22. McComb D, Smith DC (1975) A preliminary scanning electron microscopic study of root canals after endodontic procedures. J Endod 1:238–242

    Article  PubMed  Google Scholar 

  23. Cergneux M, Ciucchi B, Dietschi JM, Holz J (1987) The influence of the smear layer on the sealing ability of canal obturation. Int Endod J 20:228–232

    Article  PubMed  Google Scholar 

  24. Shahravan A, Haghdoost AA, Adl A, Rahimi H, Shadifar F (2007) Effect of smear layer on sealing ability of canal obturation: a systematic review and meta-analysis. J Endod 33:96–105

    Article  PubMed  Google Scholar 

  25. Şen BH, Wesselink PR, Türkün M (1995) The smear layer: a phenomenon in root canal therapy. Int Endod J 28:141–148

    Article  PubMed  Google Scholar 

  26. Çalt S, Serper A (2002) Time-dependent effects of EDTA on dentin structures. J Endod 28:17–19

    Article  PubMed  Google Scholar 

  27. Saleh IM, Ruyter IE, Haapasalo M, Ørstavik D (2002) The effects of dentine pretreatment on the adhesion of root-canal sealers. Int Endod J 35:859–866

    Article  PubMed  Google Scholar 

  28. Michelich VJ, Schuster GS, Pashley DH (1980) Bacterial penetration of human dentin in vitro. J Dent Res 59:1398–1403

    Article  PubMed  Google Scholar 

  29. Torabinejad M, Handysides R, Khademi AA, Bakland LK (2002) Clinical implications of the smear layer in endodontics: a review. Oral Surg Oral Med Oral Phatol Oral Radiol Endod 94:658–666

    Article  Google Scholar 

  30. Generali L, Righi E, Todesca MV, Consolo U (2014) Canal shaping with WaveOne reciprocating files: influence of operator experience on instrument breakage and canal preparation time. Odontology 102:217–222

    Article  PubMed  Google Scholar 

  31. Gandolfi MG, Prati C (2010) MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term study of sealing ability. Int Endod J 43:889–901

    Article  PubMed  Google Scholar 

  32. Iacono F, Pedullà E, Rapisarda E, Prati C, Gandolfi MG (2014) Long term stability of different obturation systems after 12 months in simulated body fluids. Gen Dent 62:20–23

    PubMed  Google Scholar 

  33. Camilleri J, Gandolfi MG, Siboni F, Prati C (2011) Dynamic sealing ability of MTA root canal sealer. Int Endod J 44:9–20

    Article  PubMed  Google Scholar 

  34. Bitter K, Paris S, Martus P, Schartner R, Kielbassa AM (2004) A confocal laser scanning microscope investigation of different dental adhesives bonded to root canal dentine. Int Endod J 37:840–848

    Article  PubMed  Google Scholar 

  35. Weis MV, Parashos P, Messer HH (2004) Effect of obturation technique on sealer cement thickness and dentinal tubule penetration. Int Endod J 37:653–663

    Article  PubMed  Google Scholar 

  36. Kok D, Húngaro Duarte MA, Abreu Da Rosa R, Wagner MH, Pereira JR, Só MV (2012) Evaluation of epoxy resin sealer after three root canal filling technique by confocal laser scanning microscopy. Microsc Res Tech 75:1277–1280

    Article  PubMed  Google Scholar 

  37. D’Alpino PH, Pereira JC, Svizero NR, Rueggeberg FA, Pashley DH (2006) Use of fluorescent compounds in assessing bonded resin-based restorations: a literature review. J Dent 34:623–634

    Article  PubMed  Google Scholar 

  38. Watson TF (1989) A confocal optical microscope study of the morphology of the tooth/restoration interface using Scotchbond 2 dentin adhesive. J Dent Res 68:1124–1131

    Article  PubMed  Google Scholar 

  39. Griffiths BM, Watson TF (1995) Resin–dentin interface of scotchbond multi-purpose dentin adhesive. Am J Dent 8:212–216

    PubMed  Google Scholar 

  40. Hilton TJ (2002) Can modern restorative procedures and materials reliably seal cavities? In vitro investigations. Part 1. Am J Dent 15:198–210

    PubMed  Google Scholar 

  41. De Deus G (2008) New directions in old leakage models. Int Endod J 41:720–721

    Article  PubMed  Google Scholar 

  42. Oksan T, Aktener BO, Sen BH, Tezel H (1993) The penetration of root canal sealers into dentinal tubules. A scanning electron microscopic study. Int Endod J 26:301–305

    Article  PubMed  Google Scholar 

  43. Kokkas AB, Boutsioukis AC, Vassiliadis LP, Stavrianos CK (2004) The influence of the smear layer on dentinal tubule penetration depth by three different root canal sealers: an in vitro study. J Endod 30:100–102

    Article  PubMed  Google Scholar 

  44. Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M (2013) Physical properties of 5 root canal sealers. J Endod 39:1281–1286

    Article  PubMed  Google Scholar 

  45. Vassiliadis LP, Sklavounos SA, Stavrianos CK (1994) Depth of penetration and appearance of Grossman sealer in the dentinal tubules: an in vivo study. J Endod 20:373–376

    Article  PubMed  Google Scholar 

  46. Mjör IA, Nordhal I (1996) The density and branching of dentinal tubules in human teeth. Arch Oral Biol 41:401–412

    Article  PubMed  Google Scholar 

  47. Beust TB (1931) Reactions of the dentinal fibril to external irritation. J Am Dent Assoc 18:1060–1073

    Google Scholar 

  48. Vasiliadis I, Darling AI, Levers BGH (1983) The amount and distribution of sclerotic human root dentine. Arch Oral Biol 28:645–649

    Article  PubMed  Google Scholar 

  49. Russel AA, Chandler NP, Haumann C, Siddiqui AY, Tompkins GR (2013) The butterfly effect: an investigation of sectioned roots. J Endod 39:208–210

    Article  Google Scholar 

  50. Van Huysen G (1960) The microstructure of normal and sclerosed dentin. J Prosthet Dent 10:976–982

    Article  Google Scholar 

  51. Giardino L, Cavani F, Generali L (2016) Sodium hypochlorite solution penetration into human dentine: a histochemical evaluation. Int Endod J. doi:10.1111/iej.12641

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Generali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by the Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, University of Modena and Reggio Emilia, Modena, Italy.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Generali, L., Prati, C., Pirani, C. et al. Double dye technique and fluid filtration test to evaluate early sealing ability of an endodontic sealer. Clin Oral Invest 21, 1267–1276 (2017). https://doi.org/10.1007/s00784-016-1878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-016-1878-0

Keywords

Navigation