Skip to main content

Advertisement

Log in

Effects of orthodontic treatment on human alveolar bone density distribution

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The objective of this study was to examine if non-invasive clinical cone beam computed tomography (CBCT)-based degree of bone mineralization (DBM) measurement can be used to detect the different results from orthodontic treatment between the maxilla and mandible in human patients.

Materials and methods

CBCT images were taken before and after orthodontic treatment from 43 patients (19 males and 24 females, 14.36 ± 1.50 years). A histogram of computed tomography (CT) attenuation value, which is equivalent to the DBM, was obtained from the alveolar cortical (AC), trabecular (AT), and enamel (E) regions of each image. Mean, standard deviation (SD), and coefficient of variation (COV) of the CT attenuation values were computed. The regional variations and percentage (%) differences between the E and alveolar regions of the CT attenuation parameters at the maxilla and mandible were analyzed before and after orthodontic treatment.

Results

The AC had higher mean and variability (SD and COV) than the AT before and after treatment (p < 0.001). The variability was higher in the mandibular AC than in the maxillar AC (p < 0.01) independent of orthodontic treatment. The percentage (%) difference of variability of CT attenuation values changed for both AT and AC in the maxilla after orthodontic treatment, while that changed for only the AT (p < 0.02), but not for AC, in the mandible (p > 0.16).

Conclusions

The alveolar cortical region of the mandible responded differently to orthodontic treatment compared with other alveolar regions.

Clinical relevance

The CBCT-based DBM analysis can be used clinically to assess alveolar bone quality changes induced by orthodontic treatment to improve treatment planning and result evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Redlich M, Shoshan S, Palmon A (1999) Gingival response to orthodontic force. Am J Orthod Dentofacial Orthop 116:152–158

    Article  PubMed  Google Scholar 

  2. Baumrind S (1969) A reconsideration of the propriety of the “pressure-tension” hypothesis. Am J Orthod 55:12–22

    Article  PubMed  Google Scholar 

  3. Engstrom C, Granstrom G, Thilander B (1988) Effect of orthodontic force on periodontal tissue metabolism. A histologic and biochemical study in normal and hypocalcemic young rats. Am J Orthod Dentofacial Orthop 93:486–495

    Article  PubMed  Google Scholar 

  4. Miyoshi K, Igarashi K, Saeki S, Shinoda H, Mitani H (2001) Tooth movement and changes in periodontal tissue in response to orthodontic force in rats vary depending on the time of day the force is applied. Eur J Orthodont 23:329–338

    Article  Google Scholar 

  5. Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop 129:469.e1–e32. doi:10.1016/j.ajodo.2005.10.007

  6. Rygh P (1973) Ultrastructural changes in pressure zones of human periodontium incident to orthodontic tooth movement. Acta Odontol Scand 31:109–122

    Article  PubMed  Google Scholar 

  7. Rygh P (1973) Ultrastructural changes of the periodontal fibers and their attachment in rat molar periodontium incident to orthodontic tooth movement. Scand J Dent Res 81:467–480

    PubMed  Google Scholar 

  8. Grimm FM (1972) Bone bending, a feature of orthodontic tooth movement. Am J Orthod 62:384–393

    Article  PubMed  Google Scholar 

  9. Katona TR, Paydar NH, Akay HU, Roberts WE (1995) Stress analysis of bone modeling response to rat molar orthodontics. J Biomech 28:27–38

    PubMed  Google Scholar 

  10. Keeling SD, King GJ, McCoy EA, Valdez M (1993) Serum and alveolar bone phosphatase changes reflect bone turnover during orthodontic tooth movement. Am J Orthod Dentofacial Orthop 103:320–326

    Article  PubMed  Google Scholar 

  11. Lilja E, Lindskog S, Hammarstrom L (1984) Alkaline phosphatase activity and tetracycline incorporation during initial orthodontic tooth movement in rats. Acta Odontol Scand 42:1–11

    Article  PubMed  Google Scholar 

  12. King GJ, Keeling SD, Wronski TJ (1991) Histomorphometric study of alveolar bone turnover in orthodontic tooth movement. Bone 12:401–409

    Article  PubMed  Google Scholar 

  13. Melsen B (1999) Biological reaction of alveolar bone to orthodontic tooth movement. Angle Orthod 69:151–158. doi:10.1043/0003-3219(1999)069<0151:BROABT>2.3.CO;2

    PubMed  Google Scholar 

  14. Deguchi T, Takano-Yamamoto T, Yabuuchi T, Ando R, Roberts WE, Garetto LP (2008) Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. Am J Orthod Dentofacial Orthop 133:889–897

    Article  PubMed  Google Scholar 

  15. Hsu J-T, Chang H-W, Huang H-L, Yu J-H, Li Y-F, Tu M-G (2010) Bone density changes around teeth during orthodontic treatment. Clin Oral Investig 15:511–519. doi:10.1007/s00784-010-0410-1

    Article  Google Scholar 

  16. Chang HW, Huang HL, Yu JH, Hsu JT, Li YF, Wu YF (2012) Effects of orthodontic tooth movement on alveolar bone density. Clin Oral Investig 16:679–688. doi:10.1007/s00784-011-0552-9

    Google Scholar 

  17. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  PubMed  Google Scholar 

  18. Ruffoni D, Fratzl P, Roschger P, Klaushofer K, Weinkamer R (2007) The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40:1308–1319

    Article  PubMed  Google Scholar 

  19. Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34:783–789

    Article  PubMed  Google Scholar 

  20. Kim DG, Shertok D, Ching Tee B, Yeni YN (2011) Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone. J Biomech 44:1660–1665. doi:10.1016/j.jbiomech.2011.03.025

    Article  PubMed  Google Scholar 

  21. Verna C, Zaffe D, Siciliani G (1999) Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone 24:371–379

    Article  PubMed  Google Scholar 

  22. Scarfe WC, Farman AG, Sukovic P (2006) Clinical applications of cone-beam computed tomography in dental practice. J Can Dent Assoc 72:75–80

    PubMed  Google Scholar 

  23. Hilgers ML, Scarfe WC, Scheetz JP, Farman AG (2005) Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofacial Orthop 128:803–811. doi:10.1016/j.ajodo.2005.08.034

    Article  PubMed  Google Scholar 

  24. Scarfe WC, Farman AG (2008) What is cone-beam CT and how does it work? Dent Clin North Am 52:707–730. doi:10.1016/j.cden.2008.05.005

    Article  PubMed  Google Scholar 

  25. Roberts JA, Drage NA, Davies J, Thomas DW (2009) Effective dose from cone beam CT examinations in dentistry. Br J Radiol 82:35–40. doi:10.1259/bjr/31419627

    Article  PubMed  Google Scholar 

  26. Ludlow JB, Davies-Ludlow LE, Brooks SL (2003) Dosimetry of two extraoral direct digital imaging devices: NewTom cone beam CT and orthophos plus DS panoramic unit. Dentomaxillofac Radiol 32:229–234

    Article  PubMed  Google Scholar 

  27. Naitoh M, Katsumata A, Mitsuya S, Kamemoto H, Ariji E (2004) Measurement of mandibles with microfocus x-ray computerized tomography and compact computerized tomography for dental use. Int J Oral Maxillofac Implants 19:239–246

    PubMed  Google Scholar 

  28. Nomura Y, Watanabe H, Honda E, Kurabayashi T (2010) Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin Oral Implants Res 21:558–562. doi:10.1111/j.1600-0501.2009.01896.x

    Article  PubMed  Google Scholar 

  29. Kwong JC, Palomo JM, Landers MA, Figueroa A, Hans MG (2008) Image quality produced by different cone-beam computed tomography settings. Am J Orthod Dentofacial Orthop 133:317–327. doi:10.1016/j.ajodo.2007.02.053

    Article  PubMed  Google Scholar 

  30. Loubele M, Jacobs R, Maes F, Denis K, White S, Coudyzer W, Lambrichts I, van Steenberghe D, Suetens P (2008) Image quality vs radiation dose of four cone beam computed tomography scanners. Dentomaxillofac Radiol 37:309–318. doi:10.1259/dmfr/16770531

    Article  PubMed  Google Scholar 

  31. Verna C, Dalstra M, Melsen B (2000) The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. Eur J Orthod 22:343–352

    Article  PubMed  Google Scholar 

  32. Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 8:833–842. doi:10.1002/jor.1100080608

    Article  PubMed  Google Scholar 

  33. Naitoh M, Hirukawa A, Katsumata A, Ariji E (2009) Evaluation of voxel values in mandibular cancellous bone: relationship between cone-beam computed tomography and multislice helical computed tomography. Clin Oral Implants Res 20:503–506. doi:10.1111/j.1600-0501.2008.01672.x

    Article  PubMed  Google Scholar 

  34. González-García R, Monje F (2011) The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro-CT. Clin Oral Implants Res. doi:10.1111/j.1600-0501.2011.02390.x

  35. Marquezan M, Lau TC, Mattos CT, Cunha AC, Nojima LI, Sant'Anna EF, Souza MM, Araujo MT (2012) Bone mineral density. Angle Orthod 82:62–66. doi:10.2319/031811-192.1

    Article  PubMed  Google Scholar 

  36. Bryant JA, Drage NA, Richmond S (2008) Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system. Dentomaxillofac Radiol 37:365–374. doi:10.1259/dmfr/13227258

    Article  PubMed  Google Scholar 

  37. Nackaerts O, Maes F, Yan H, Couto Souza P, Pauwels R, Jacobs R (2011) Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res 22:873–879. doi:10.1111/j.1600-0501.2010.02076.x

    Article  PubMed  Google Scholar 

  38. Katsumata A, Hirukawa A, Okumura S, Naitoh M, Fujishita M, Ariji E, Langlais RP (2007) Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:829–836. doi:10.1016/j.tripleo.2006.12.005

    Article  PubMed  Google Scholar 

  39. Smith CE (1998) Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 9:128–161

    Article  PubMed  Google Scholar 

  40. Demirci M, Tuncer S, Yuceokur AA (2010) Prevalence of caries on individual tooth surfaces and its distribution by age and gender in university clinic patients. Eur J Dent 4:270–279

    PubMed  Google Scholar 

  41. Yao W, Cheng Z, Koester KJ, Ager JW, Balooch M, Pham A, Chefo S, Busse C, Ritchie RO, Lane NE (2007) The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone 41:804–812

    Article  PubMed  Google Scholar 

  42. Busse B, Hahn M, Soltau M, Zustin J, Puschel K, Duda GN, Amling M (2009) Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 45:1034–1043. doi:10.1016/j.bone.2009.08.002

    Article  PubMed  Google Scholar 

  43. Ames MS, Hong S, Lee HR, Fields HW, Johnston WM, Kim DG (2010) Estrogen deficiency increases variability of tissue mineral density of alveolar bone surrounding teeth. Arch Oral Biol 55:599–605. doi:10.1016/j.archoralbio.2010.05.011

    Article  PubMed  Google Scholar 

  44. Allen MR, Turek JJ, Phipps RJ, Burr DB (2011) Greater magnitude of turnover suppression occurs earlier after treatment initiation with risedronate than alendronate. Bone 49:128–132. doi:10.1016/j.bone.2010.07.011

    Article  PubMed  Google Scholar 

  45. Huja SS, Fernandez SA, Hill KJ, Li Y (2006) Remodeling dynamics in the alveolar process in skeletally mature dogs. Anat Rec Part A 288A:1243–1249

    Article  Google Scholar 

  46. Huja SS, Beck FM (2008) Bone remodeling in maxilla, mandible, and femur of young dogs. Anatomical Record (Hoboken, NJ: 2007) 291:1–5

    Article  Google Scholar 

  47. Randall LE, Beck FM, Huja SS (2011) Bone remodeling surrounding primary teeth in skeletally immature dogs. Angle Orthod 81:931–937. doi:10.2319/021611-114.1

    Article  PubMed  Google Scholar 

  48. Hylander WL, Crompton AW (1986) Jaw movements and patterns of mandibular bone strain during mastication in the monkey Macaca fascicularis. Arch Oral Biol 31:841–848

    Article  PubMed  Google Scholar 

  49. Daegling DJ, Hylander WL (2000) Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am J Phys Anthropol 112:541–551

    Article  PubMed  Google Scholar 

  50. Ravosa MJ, Johnson KR, Hylander WL (2000) Strain in the galago facial skull. J Morphol 245:51–66. doi:10.1002/1097-4687(200007)245:1<51::AID-JMOR4>3.0.CO;2-7

    Article  PubMed  Google Scholar 

  51. Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240. doi:10.1093/ejo/cjl001

    Article  PubMed  Google Scholar 

  52. Fyhrie DP, Vashishth D (2000) Bone stiffness predicts strength similarly for human vertebral cancellous bone in compression and for cortical bone in tension. Bone 26:169–173. doi:10.1016/s8756-3282(99)00246-x

    Article  PubMed  Google Scholar 

  53. Roberts WE, Arbuckle GR, Analoui M (1996) Rate of mesial translation of mandibular molars using implant-anchored mechanics. Angle Orthod 66:331–338. doi:10.1043/0003-3219(1996)066<0331:ROMTOM>2.3.CO;2

    PubMed  Google Scholar 

  54. Roberts WE (2005) Bone physiology, metabolism, and biomechanics in orthodontic practice. In: Graber TM, Vanarsdall RL, Vig KWL (eds) Orthodontics: current principles and techniques. Mosby, St. Louis, pp 221–292

    Google Scholar 

  55. Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL, Schaffler MB (1998) Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res 16:322–329. doi:10.1002/jor.1100160308

    Article  PubMed  Google Scholar 

  56. Reilly GC, Currey JD (1999) The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J Exp Biol 202:543–552

    PubMed  Google Scholar 

  57. Verna C, Dalstra M, Lee TC, Cattaneo PM, Melsen B (2004) Microcracks in the alveolar bone following orthodontic tooth movement: a morphological and morphometric study. Eur J Orthod 26:459–467

    Article  PubMed  Google Scholar 

  58. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomech 18:189–200

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Delta Dental Foundation for providing financial support for this research through the Dental Master’s Thesis Award Program. We thank the Orthodontic Department at Case Western Reserve University for providing us with the CBCT images used in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Gyoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Richards, M., Bedair, T. et al. Effects of orthodontic treatment on human alveolar bone density distribution. Clin Oral Invest 17, 2033–2040 (2013). https://doi.org/10.1007/s00784-012-0906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-012-0906-y

Keywords

Navigation