Skip to main content
Log in

Minimierung kontrastmittelinduzierter Nephropathien

Strategien bei CTA, Katheterangiographie und Interventionen

Minimizing contrast-induced nephropathy

Strategies in CTA, catheter angiography and interventions

  • Leitthema
  • Published:
Gefässchirurgie Aims and scope Submit manuscript

Zusammenfassung

Ziel der vorliegenden Arbeit ist die Diskussion von Strategien zur Minimierung der Kontrastmittel(KM)-Dosen bei Patienten mit dem Risiko einer KM-induzierten Nephropathie („contrast medium-induced nephropathy“, CIN) nach Computertomographie(CT)-Angiographie, perkutaner Katheterangiographie (PCA) und vaskulärer Intervention (PVI). Allgemein scheint ein Verhältnis zwischen der Jodmenge in Gramm und der geschätzten glomerulären Filtrationsrate (g-I/eGFR) ≥1,0 ein signifikanter und unabhängiger Prädiktor einer CIN bei CTA und Koronarinterventionen zu sein. Bei Patienten mit hohem CIN-Risiko (z. B. eGFR <45 ml/min oder multiple Risikofaktoren) wird empfohlen, die g-I/eGFR-Ratio <0,5 zu halten. Bei Patienten mit Niereninsuffizienz kann eine 80-kVp-CTA mit 100–150 mg I/kg durchgeführt werden, dabei muss die Leistung der Röntgenröhre erhöht werden, um den Kontrast-Rausch-Abstand auf einem akzeptablen Niveau zu halten. Eine periphere PCA/PVI auf der Basis der digitalen Subtraktionstechnik kann mit 75–150 mg I/ml erfolgen oder auch weniger, wenn das Gerät die manuelle Einstellung des Röntgenröhrenpotenzials erlaubt. Koronararteriographien/-interventionen können bei 140–150 mg I/ml erfolgen, d. h. mit weniger als der Hälfte der üblicherweise verwendeten Konzentrationen (~320–370 mg I/ml), vor allem bei dünneren Patienten mit erhöhter Jodabschwächung aufgrund der automatischen Herabregulierung des Röntgenröhrenpotenzials.

Die englische Volltextversion dieses Beitrags ist über SpringerLink (unter „Supplemental“) verfügbar.

Abstract

The aim of the present paper is to discuss strategies to minimize contrast medium (CM) doses in patients at risk of CM-induced nephropathy (CIN) after computed tomographic angiography (CTA), and percutaneous catheter angiography (PCA) and vascular interventions (PVI). In general a gram-iodine (g-I)/eGFR ratio ≥1.0 appears to be a significant and independent predictor of CIN in CTA and coronary interventions. In high CIN-risk patients (e.g., eGFR <45 ml/min or multiple risk factors), it is recommended to keep the g-I/eGFR ratio <0.5. In azotemic patients, 80 kVp CTA may be accomplished with 100–150 mg I/kg while x-ray tube loading must be increased to maintain the contrast-to-noise ratio at an acceptable level. Peripheral PCA/PVI based on digital subtraction technique may be performed with 75–150 mg I/ml, or even lower if the equipment permits manual setting of the x-ray tube potential. Coronary arteriography/interventions may be achieved with 140–150 mg I/ml, i.e., less than half the routinely used concentrations (~320–370 mg I/ml), especially in thinner patients with increased iodine attenuation due to automatic down regulation of the x-ray tube potential.

The English full-text version of this article is available at SpringerLink (under “Supplemental”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Mehran R, Nikolsky E (2006) Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int Suppl 69:S11–S15

    Article  Google Scholar 

  2. McCullough PA, Adam A, Becker CR et al (2006) Epidemiology and prognostic implications of contrast-induced nephropathy. Am J Cardiol 98:5K–13K

    Article  PubMed  CAS  Google Scholar 

  3. McCullough PA, Adam A, Becker CR et al (2006) Risk prediction of contrast-induced nephropathy. Am J Cardiol 98:27K–36K

    Article  PubMed  Google Scholar 

  4. Kakkar R, Sobieszczyk P, Binkert CA et al (2008) Prevention of intravenous contrast-induced nephropathy in hospital inpatients. Crit Pathw Cardiol 7:1–4

    Article  PubMed  Google Scholar 

  5. Davidson C, Stacul F, McCullough PA et al (2006) Contrast medium use. Am J Cardiol 98:42K–58K

    Article  PubMed  CAS  Google Scholar 

  6. Katzberg RW, Barrett BJ (2007) Risk of iodinated contrast material – induced nephropathy with intravenous administration. Radiology 243:622–628

    Article  PubMed  Google Scholar 

  7. Katzberg RW, Newhouse JH (2010) Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology 256:21–28

    Article  PubMed  Google Scholar 

  8. Rao QA, Newhouse JH (2006) Risk of nephropathy after intravenous administration of contrast material: a critical literature analysis. Radiology 239:392–397

    Article  PubMed  Google Scholar 

  9. Newhouse JH, Kho D, Rao QA, Starren J (2008) Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol 191:376–382

    Article  PubMed  Google Scholar 

  10. Tepel M, Giet M van der, Schwarzfeld C et al (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343:180–184

    Article  PubMed  CAS  Google Scholar 

  11. Polena S, Yang S, Alam R et al (2005) Nephropathy in critically Ill patients without preexisting renal disease. Proc West Pharmacol Soc 48:134–135

    PubMed  Google Scholar 

  12. Nguyen SA, Suranyi P, Ravenel JG et al (2008) Iso-osmolality versus low-osmolality iodinated contrast medium at intravenous contrast-enhanced CT: effect on kidney function. Radiology 248:97–105

    Article  PubMed  Google Scholar 

  13. Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT – a pooled analysis of two randomized trials. Eur Radiol 19:891–897

    Article  PubMed  Google Scholar 

  14. Mitchell AM, Jones AE, Tumlin JA, Kline JA (2010) Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol 5:4–9. doi:10.2215/CJN.05200709

    Article  PubMed  Google Scholar 

  15. Barrett BJ, Katzberg RW, Thomsen HS et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Invest Radiol 41:815–821

    Article  PubMed  CAS  Google Scholar 

  16. Kuhn MJ, Chen N, Sahani DV et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure. AJR Am J Roentgenol 191:151–157

    Article  PubMed  Google Scholar 

  17. Thomsen HS, Morcos SK, Erley CM et al (2008) The ACTIVE Trial: comparison on the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol 43:170–178

    Article  PubMed  CAS  Google Scholar 

  18. From AM, Bartholmai BJ, Williams AW et al (2008) Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin Proc 83:1095–1100

    Article  PubMed  Google Scholar 

  19. Aspelin P, Almen T (1976) Studies on the acute toxicity of ionic and non-ionic contrast media following rapid intravenous injection. An experimental study in mice. Invest Radiol 11:309–314

    Article  PubMed  CAS  Google Scholar 

  20. Kelly AM, Dwamena B, Cronin P et al (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148:284–294

    PubMed  Google Scholar 

  21. Stacul F, Adam A, Becker CR et al (2006) Strategies to reduce the risk of contrast-induced nephropathy. Am J Cardiol 98:59K–77K

    Article  PubMed  CAS  Google Scholar 

  22. Biondi-Zoccai GG, Lotrionte M, Abbate A et al (2006) Compliance with QUOROM and quality of reporting of overlapping meta-analyses on the role of acetylcysteine in the prevention of contrast associated nephropathy: case study. BMJ 332:202–209

    Article  PubMed  Google Scholar 

  23. Zoungas S, Ninomiya T, Huxley R et al (2009) Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med 151:631–638

    PubMed  Google Scholar 

  24. Perrone RD, Madias NE, Levey AS (1992) Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 38:1933–1953

    PubMed  CAS  Google Scholar 

  25. Duncan L, Heathcote J, Djurdjev O, Levin A (2001) Screening for renal disease using serum creatinine: who are we missing? Nephrol Dial Transplant 16:1042–1046

    Article  PubMed  CAS  Google Scholar 

  26. NKF5 (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Part 5. Evaluation of laboratory measurements for clinical assessment of kidney disease. Am J Kidney Dis 39:S76–S110

    Google Scholar 

  27. Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  PubMed  CAS  Google Scholar 

  28. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  29. Levey AS, Coresh J, Greene T et al (2007) Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 53:766–772

    Article  PubMed  CAS  Google Scholar 

  30. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    PubMed  Google Scholar 

  31. Nyman U, Björk J, Sterner G et al (2006) Standardization of p-creatinine assays and use of lean body mass allow improved prediction of calculated glomerular filtration rate in adults: a new equation. Scand J Clin Lab Invest 66:451–468

    Article  PubMed  CAS  Google Scholar 

  32. Mehran R, Aymong ED, Nikolsky E et al (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44:1393–1399

    PubMed  Google Scholar 

  33. Bartholomew BA, Harjai KJ, Dukkipati S et al (2004) Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am J Cardiol 93:1515–1519

    Article  PubMed  Google Scholar 

  34. Myers GL, Miller WG, Coresh J et al (2006) Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 52:5–18

    Article  PubMed  CAS  Google Scholar 

  35. DuBois D, DuBois E (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:1275–1283

    Google Scholar 

  36. Chen M-L, Lekso L, Williams R (2001) Measures of exposure versus measures of rate and extent of absorption. Clin Pharmacokinet 40:565–572

    Article  PubMed  CAS  Google Scholar 

  37. Sherwin PF, Cambron R, Johnson JA, Pierro JA (2005) Contrast dose-to-creatinine clearance ratio as a potential indicator of risk for radiocontrast-induced nephropathy: correlation of D/CrCL with area under the contrast concentration-time curve using iodixanol. Invest Radiol 40:598–603

    Article  PubMed  CAS  Google Scholar 

  38. Nyman U, Almen T, Aspelin P et al (2005) Contrast-medium-Induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46:830–842

    Article  PubMed  CAS  Google Scholar 

  39. Nyman U, Björk J, Aspelin P, Marenzi G (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49:658–667

    Article  PubMed  CAS  Google Scholar 

  40. Laskey WK, Jenkins C, Selzer F et al (2007) Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol 50:584–590

    Article  PubMed  CAS  Google Scholar 

  41. Liu Y, Tan N, Zhou YL et al (2011) The contrast medium volume to estimated glomerular filtration rate ratio as a predictor of contrast-induced nephropathy after primary percutaneous coronary intervention. Int Urol Nephrol [Epub ahead of print]

  42. Mager A, Assa HV, Lev EI et al (2010) The ratio of contrast volume to glomerular filtration rate predicts outcomes after percutaneous coronary intervention for ST-segment elevation acute myocardial infarction. Catheter Cardiovasc Interv [Epub ahead of print]

  43. Worasuwannarak S, Pornratanarangsi S (2010) Prediction of contrast-induced nephropathy in diabetic patients undergoing elective cardiac catheterization or PCI: role of volume-to-creatinine clearance ratio and iodine dose-to-creatinine clearance ratio. J Med Assoc Thai 93(Suppl 1):S29–S34

    PubMed  Google Scholar 

  44. Kormano M, Dean PB (1976) Extravascular contrast material: the major component of contrast enhancement. Radiology 121:379–382

    PubMed  CAS  Google Scholar 

  45. Dawson P (1999) Pharmacokinetics of watersoluble iodinated X-ray contrast agents. In: Dawson P, Cosgrove DO, Grainger RG (eds) Textbook of contrast media. Isis Medical Media, Oxford, pp 61–74

  46. Hackstein N, Langheinrich AC, Rau WS (2002) Lopromide one-sample clearance as a measure of glomerular filtration rate. Clin Physiol Funct Imaging 22:99–107

    Article  PubMed  CAS  Google Scholar 

  47. Kormano M, Partanen K, Soimakallio S, Kivimaki T (1983) Dynamic contrast enhancement of the upper abdomen: effect of contrast medium and body weight. Invest Radiol 18:364–367

    Article  PubMed  CAS  Google Scholar 

  48. Olsson B, Aulie A, Sveen K, Andrew E (1983) Human pharmacokinetics of iohexol. A new nonionic contrast medium. Invest Radiol 18:177–182

    Article  PubMed  CAS  Google Scholar 

  49. Tietz NW (1995) Clinical Guide to Laboratory Tests. WB Saunders

  50. Fleischmann D (2003) Use of high-concentration contrast media in multiple-detector-row CT: principles and rationale. Eur Radiol 13(Suppl 5):M14–M20

    Article  PubMed  Google Scholar 

  51. Awai K, Hiraishi K, Hori S (2004) Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 230:142–150

    Article  PubMed  Google Scholar 

  52. Awai K, Hori S (2003) Effect of contrast injection protocol with dose tailored to patient weight and fixed injection duration on aortic and hepatic enhancement at multidetector-row helical CT. Eur Radiol 13:2155–2160

    Article  PubMed  Google Scholar 

  53. Bae KT, Seeck BA, Hildebolt CF et al (2008) Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity. AJR Am J Roentgenol 190:777–784

    Article  PubMed  Google Scholar 

  54. Holmquist F, Hansson K, Pasquariello F et al (2009) Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients. Acta Radiol 50:181–193

    Article  PubMed  CAS  Google Scholar 

  55. Kristiansson M, Holmquist F, Nyman U (2010) Ultralow contrast medium doses at CT to diagnose pulmonary embolism in patients with moderate to severe renal impairment. A feasibility study. Eur Radiol 20:1321–1330

    Article  PubMed  Google Scholar 

  56. Morgan DJ, Bray KM (1994) Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin Pharmacokinet 26:292–307

    Article  PubMed  CAS  Google Scholar 

  57. Awai K, Inoue M, Yagyu Y et al (2004) Moderate versus high concentration of contrast material for aortic and hepatic enhancement and tumor-to-liver contrast at multi-detector row CT. Radiology 233:682–688

    Article  PubMed  Google Scholar 

  58. Suzuki H, Oshima H, Shiraki N et al (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14:2099–2104

    Article  PubMed  Google Scholar 

  59. Prokop M (2003) Image analysis. In: Prokop M, Galanski M, Van der Molen AJ, Schaefer-Prokop C (eds) Spiral and multislice computed tomography of the body. Thieme, Stuttgart, pp 198

  60. Bae KT, Heiken JP, Brink JA (1998) Aortic and hepatic contrast medium enhancement at CT. Part II. Effect of reduced cardiac output in a porcine model. Radiology 207:657–662

    PubMed  CAS  Google Scholar 

  61. Flinck M, Graden A, Milde H et al (2010) Cardiac output measured by electrical velocimetry in the CT suite correlates with coronary artery enhancement: a feasibility study. Acta Radiol 51:895–902

    Article  PubMed  Google Scholar 

  62. Ronco C, Haapio M, House AA et al (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539

    Article  PubMed  Google Scholar 

  63. Bae KT, Mody GN, Balfe DM et al (2005) CT depiction of pulmonary emboli: display window settings. Radiology 236:677–684

    Article  PubMed  Google Scholar 

  64. Holmquist F, Nyman U (2006) Eighty-peak kilovoltage 16-channel multidetector computed tomography and reduced contrast-medium doses tailored to body weight to diagnose pulmonary embolism in azotaemic patients. Eur Radiol 16:1165–1176

    Article  PubMed  Google Scholar 

  65. Esteban JM, Alonso A, Cervera V, Martinez V (2007) One-molar gadolinium chelate (gadobutrol) as a contrast agent for CT angiography of the thoracic and abdominal aorta. Eur Radiol 17:2394–2400

    Article  PubMed  Google Scholar 

  66. Remy-Jardin M, Bahepar J, Lafitte JJ et al (2006) Multi-detector row CT angiography of pulmonary circulation with gadolinium-based contrast agents: prospective evaluation in 60 patients. Radiology 238:1022–1035

    Article  PubMed  Google Scholar 

  67. Spinosa DJ, Angle JF, Hartwell GD et al (2002) Gadolinium-based contrast agents in angiography and interventional radiology. Radiol Clin North Am 40:693–710

    Article  PubMed  Google Scholar 

  68. Strunk HM, Schild H (2004) Actual clinical use of gadolinium-chelates for non-MRI applications. Eur Radiol 14:1055–1062

    Article  PubMed  Google Scholar 

  69. Voss R, Grebe M, Heidt M, Erdogan A (2004) Use of gadobutrol in coronary angiography. Catheter Cardiovasc Interv 63:319–322

    Article  PubMed  Google Scholar 

  70. Buhaescu I, Izzedine H (2008) Gadolinium-induced nephrotoxicity. Int J Clin Pract 62:1113–1118

    Article  PubMed  CAS  Google Scholar 

  71. Ergun I, Keven K, Uruc I et al (2006) The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol Dial Transplant 21:697–700

    Article  PubMed  Google Scholar 

  72. Sam AD 2nd, Morasch MD, Collins J et al (2003) Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg 38:313–318

    Article  PubMed  Google Scholar 

  73. Elmståhl B, Nyman U, Leander P et al (2008) Iodixanol 320 results in better renal tolerance and radiodensity than do gadolinium-based contrast media: arteriography in ischemic porcine kidneys. Radiology 247:88–97

    Article  PubMed  Google Scholar 

  74. Elmståhl B, Nyman U, Leander P et al (2004) Gadolinium contrast media are more nephrotoxic than a low osmolar iodine medium employing doses with equal X-ray attenuation in renal arteriography: an experimental study in pigs. Acad Radiol 11:1219–1228

    Article  PubMed  Google Scholar 

  75. Nyman U, Elmståhl B, Leander P et al (2002) Are gadolinium-based contrast media really safer than iodinated media for digital subtraction angiography in patients with azotemia? Radiology 223:311–318; discussion 328–319

    Article  PubMed  Google Scholar 

  76. Nyman U, Elmståhl B, Geijer H et al (2011) Iodine contrast iso-attenuating with diagnostic gadolinium doses in CTA and angiography results in ultra-low iodine doses. A way to avoid both CIN and NSF in azotemic patients? Eur Radiol 21:326–336

    Article  PubMed  Google Scholar 

  77. Hawkins IF, Cho KJ, Caridi JG (2009) Carbon dioxide in angiography to reduce the risk of contrast-induced nephropathy. Radiol Clin North Am 47:813–825, v–vi

    Article  PubMed  Google Scholar 

  78. Sterner G, Nyman U, Valdes T (2001) Low risk of contrast-medium-induced nephropathy with modern angiographic technique. J Intern Med 250:429–434

    Article  PubMed  CAS  Google Scholar 

  79. Lufft V, Hoogestraat-Lufft L, Fels LM et al (2002) Contrast media nephropathy: intravenous CT angiography versus intraarterial digital subtraction angiography in renal artery stenosis: a prospective randomized trial. Am J Kidney Dis 40:236–242

    Article  PubMed  Google Scholar 

  80. Kolehemainen H, Sovia M (2003) Comparison of Xenetix 300 and Visipaque 320 in patients with renal failure (P27). 10th European Symposium on Urogenital Radiology. Euro Radiol 13:B32–B33

    Google Scholar 

  81. Garcia-Ruiz C, Martinez-Vea A, Sempere T et al (2004) Low risk of contrast nephropathy in high-risk patients undergoing spiral computed tomography angiography with the contrast medium iopromide and prophylactic oral hydratation. Clin Nephrol 61:170–176

    PubMed  CAS  Google Scholar 

  82. Becker CR, Reiser MF (2005) Use of iso-osmolar nonionic dimeric contrast media in multidetector row computed tomography angiography for patients with renal impairment. Invest Radiol 40:672–675

    Article  PubMed  Google Scholar 

  83. Weisbord SD, Mor MK, Resnick AL et al (2008) Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol 3:1274–1281

    Article  PubMed  Google Scholar 

  84. Fariñas PL (1941) A new technique for the arteriographic examination of the abdominal aorta and its branches. AJR Am J Roentgenol 46:641–645

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung(en) hin: Der Autor hat das Computerprogramm OmniVis entwickelt, welches an GE Healthcare mit dem Recht zum Vertrieb verkauft wurde. Er hält gegen Bezahlung Vorträge für verschiedene Kontrastmittel herstellende pharmazeutische Unternehmen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Nyman MD, PhD.

Zusatzmaterial online

772_2011_927_MO1_ESM.pdf

Englische Version: Minimizing contrast-induced nephropathy. Strategies in CTA, catheter angiography and interventions (PDF 0,5 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyman, U. Minimierung kontrastmittelinduzierter Nephropathien. Gefässchirurgie 16, 469–480 (2011). https://doi.org/10.1007/s00772-011-0927-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00772-011-0927-x

Schlüsselwörter

Keywords

Navigation