Skip to main content

Advertisement

Log in

Advanced glycation endproducts and their pathogenic roles in neurological disorders

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Glycation is implicated in neurological disorders. In some cases it plays a key role in the pathogenesis, in others it plays a co-adjuvant role or it appears as a consequence of degenerative changes and protein accumulation stemming from other pathways. In this work, we attempt to provide a concise, updated review of the major recent findings concerning glycation in neurological diseases. After a short introduction covering advanced glycation endproducts (AGEs) and the receptor for AGEs (RAGE), we will discuss the impact of glycation in central nervous system disorders including Alzheimer’s, Parkinson’s and Creutzfeldt–Jakob disease, as well as peripheral diabetic polyneuropathies. Therapies directed at lowering the concentrations of RAGE ligands including AGEs, blocking RAGE signaling, preventing oxidative stress or lowering methylglyoxal (MGO) levels may significantly decrease the development of AGE-related pathologies in patients with neurological disorders. Many drugs are on the pipeline and the future clinical trials will reveal if the promising results translate into clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed N (2005) Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21

    PubMed  CAS  Google Scholar 

  • Ahmed N, Battah S, Karachalias N, Babaei-Jadidi R, Horanyi M, Baroti K, Hollan S, Thornalley PJ (2003) Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency. Biochim Biophys Acta 1639(2):121–132

    PubMed  CAS  Google Scholar 

  • Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallstrom E, Lobell A, Brundin L, Lassmann H, Harris RA (2008) Pivotal advance: Hmgb1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 84(5):1248–1255

    PubMed  CAS  Google Scholar 

  • Anzai Y, Hayashi M, Fueki N, Kurata K, Ohya T (2006) Protracted juvenile neuronal ceroid lipofuscinosis—an autopsy report and immunohistochemical analysis. Brain Dev 28(7):462–465

    PubMed  Google Scholar 

  • Arya R, Lalloz MR, Nicolaides KH, Bellingham AJ, Layton DM (1996) Prenatal diagnosis of triosephosphate isomerase deficiency. Blood 87(11):4507–4509

    PubMed  CAS  Google Scholar 

  • Berbaum K, Shanmugam K, Stuchbury G, Wiede F, Korner H, Münch G (2008) Induction of novel cytokines and chemokines by advanced glycation endproducts determined with a cytometric bead array. Cytokine 41(3):198–203

    PubMed  CAS  Google Scholar 

  • Bierhaus A, Haslbeck KM, Humpert PM, Liliensiek B, Dehmer T, Morcos M, Sayed AA, Andrassy M, Schiekofer S, Schneider JG, Schulz JB, Heuss D, Neundorfer B, Dierl S, Huber J, Tritschler H, Schmidt AM, Schwaninger M, Haering HU, Schleicher E, Kasper M, Stern DM, Arnold B, Nawroth PP (2004) Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J Clin Invest 114(12):1741–1751

    PubMed  CAS  Google Scholar 

  • Bigl K, Gaunitz F, Schmitt A, Rothemund S, Schliebs R, Münch G, Arendt T (2008) Cytotoxicity of advanced glycation endproducts in human micro- and astroglial cell lines depends on the degree of protein glycation. J Neural Transm 115(11):1545–1556

    PubMed  CAS  Google Scholar 

  • Blatnik M, Frizzell N, Thorpe SR, Baynes JW (2008) Inactivation of glyceraldehyde-3-phosphate dehydrogenase by fumarate in diabetes: Formation of s-(2-succinyl)cysteine, a novel chemical modification of protein and possible biomarker of mitochondrial stress. Diabetes 57(1):41–49

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1988) Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol Appl Neurobiol 14(1):39–44

    PubMed  CAS  Google Scholar 

  • Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    PubMed  CAS  Google Scholar 

  • Bucht G, Adolfsson R, Lithner F, Winblad B (1983) Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand 213(5):387–392

    PubMed  CAS  Google Scholar 

  • Cameron NE, Cotter MA (1993) Potential therapeutic approaches to the treatment or prevention of diabetic neuropathy: evidence from experimental studies. Diabet Med 10(7):593–605

    PubMed  CAS  Google Scholar 

  • Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa b pathway. Curr Drug Targets 9(1):60–67

    PubMed  CAS  Google Scholar 

  • Cameron NE, Eaton SE, Cotter MA, Tesfaye S (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44(11):1973–1988

    PubMed  CAS  Google Scholar 

  • Carini M, Aldini G, Beretta G, Arlandini E, Facino RM (2003) Acrolein-sequestering ability of endogenous dipeptides: characterization of carnosine and homocarnosine/acrolein adducts by electrospray ionization tandem mass spectrometry. J Mass Spectrom 38(9):996–1006

    PubMed  CAS  Google Scholar 

  • Carubelli R, Schneider JE Jr, Pye QN, Floyd RA (1995) Cytotoxic effects of autoxidative glycation. Free Radic Biol Med 18(2):265–269

    PubMed  CAS  Google Scholar 

  • Castellani R, Smith MA, Richey PL, Perry G (1996) Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Res 737(1–2):195–200

    PubMed  CAS  Google Scholar 

  • Castellani RJ, Harris PL, Sayre LM, Fujii J, Taniguchi N, Vitek MP, Founds H, Atwood CS, Perry G, Smith MA (2001) Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 31(2):175–180

    PubMed  CAS  Google Scholar 

  • Celotto AM, Frank AC, Seigle JL, Palladino MJ (2006) Drosophila model of human inherited triosephosphate isomerase deficiency glycolytic enzymopathy. Genetics 174(3):1237–1246

    PubMed  CAS  Google Scholar 

  • Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (rage) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198(10):1507–1515

    PubMed  CAS  Google Scholar 

  • Chou SM, Wang HS, Taniguchi A, Bucala R (1998) Advanced glycation endproducts in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol Med 4(5):324–332

    PubMed  CAS  Google Scholar 

  • Cochrane SM, Furth AJ (1993) The role of bound lipid and transition metal in the formation of fluorescent advanced glycation endproducts by human serum albumin. Biochem Soc Trans 21(2):97S

    PubMed  CAS  Google Scholar 

  • D’Amelio M, Ragonese P, Callari G, Di Benedetto N, Palmeri B, Terruso V, Salemi G, Famoso G, Aridon P, Savettieri G (2009) Diabetes preceding Parkinson’s disease onset. A case–control study. Parkinsonism Relat Disord 15(9):660–664

    PubMed  Google Scholar 

  • Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64(9):816–830

    PubMed  CAS  Google Scholar 

  • Deuther-Conrad W, Loske C, Schinzel R, Dringen R, Riederer P, Münch G (2001) Advanced glycation endproducts change glutathione redox status in sh-sy5y human neuroblastoma cells by a hydrogen peroxide dependent mechanism. Neurosci Lett 312(1):29–32

    PubMed  CAS  Google Scholar 

  • Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003) Inhibition of gapdh activity by poly(adp-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112(7):1049–1057

    PubMed  CAS  Google Scholar 

  • Dukic-Stefanovic S, Schinzel R, Riederer P, Münch G (2001) Ages in brain ageing: age-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology 2(1):19–34

    PubMed  CAS  Google Scholar 

  • Dukic-Stefanovic S, Gasic-Milenkovic J, Deuther-Conrad W, Münch G (2003) Signal transduction pathways in mouse microglia n-11 cells activated by advanced glycation endproducts (ages). J Neurochem 87(1):2609–2615

    Google Scholar 

  • Duran-Jimenez B, Dobler D, Moffatt S, Rabbani N, Streuli CH, Thornalley PJ, Tomlinson DR, Gardiner NJ (2009) Advanced glycation end products in extracellular matrix proteins contribute to the failure of sensory nerve regeneration in diabetes. Diabetes 58(12):2893–2903

    PubMed  CAS  Google Scholar 

  • Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, Suffredini AF (2003) Inflammation-promoting activity of hmgb1 on human microvascular endothelial cells. Blood 101(7):2652–2660

    PubMed  CAS  Google Scholar 

  • Fujisawa Y, Sasaki K, Akiyama K (1991) Increased insulin levels after ogtt load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiatry 30(12):1219–1228

    PubMed  CAS  Google Scholar 

  • Gasic-Milenkovic J, Loske C, Deuther-Conrad W, Münch G (2001) Protein “ageing”—cytotoxicity of a glycated protein increases with its degree of age-modification. Z Gerontol Geriatr 34(6):457–460

    PubMed  CAS  Google Scholar 

  • Gasic-Milenkovic J, Dukic-Stefanovic S, Deuther-Conrad W, Gartner U, Münch G (2003) Beta-amyloid peptide potentiates inflammatory responses induced by lipopolysaccharide, interferon-gamma and ‘advanced glycation endproducts’ in a murine microglia cell line. Eur J Neurosci 17(4):813–821

    PubMed  Google Scholar 

  • Gasser A, Forbes JM (2008) Advanced glycation: implications in tissue damage and disease. Protein Pept Lett 15(4):385–391

    PubMed  CAS  Google Scholar 

  • Gerdemann A, Lemke HD, Nothdurft A, Heidland A, Münch G, Bahner U, Schinzel R (2000) Low-molecular but not high-molecular advanced glycation end products (ages) are removed by high-flux dialysis. Clin Nephrol 54(4):276–283

    PubMed  CAS  Google Scholar 

  • Girones X, Guimera A, Cruz-Sanchez CZ, Ortega A, Sasaki N, Makita Z, Lafuente JV, Kalaria R, Cruz-Sanchez FF (2004) N epsilon-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer’s disease. Free Radic Biol Med 36(10):1241–1247

    PubMed  CAS  Google Scholar 

  • Gnerer JP, Kreber RA, Ganetzky B (2006) Wasted away, a drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death. Proc Natl Acad Sci USA 103(41):14987–14993

    PubMed  CAS  Google Scholar 

  • Gotz J (2001) Tau and transgenic animal models. Brain Res Brain Res Rev 35(3):266–286

    PubMed  CAS  Google Scholar 

  • Gros-Louis F, Gaspar C, Rouleau GA (2006) Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 1762(11–12):956–972

    PubMed  CAS  Google Scholar 

  • Hamada K, Kato M, Shimizu T, Ihara K, Mizuno T, Hakoshima T (2005) Crystal structure of the protein histidine phosphatase sixa in the multistep his-asp phosphorelay. Genes Cells 10(1):1–11

    PubMed  CAS  Google Scholar 

  • Haslbeck KM, Schleicher E, Bierhaus A, Nawroth P, Haslbeck M, Neundorfer B, Heuss D (2005) The age/rage/nf-(kappa)b pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (igt). Exp Clin Endocrinol Diabetes 113(5):288–291

    PubMed  CAS  Google Scholar 

  • Haslbeck KM, Neundorfer B, Schlotzer-Schrehardtt U, Bierhaus A, Schleicher E, Pauli E, Haslbeck M, Hecht M, Nawroth P, Heuss D (2007) Activation of the rage pathway: a general mechanism in the pathogenesis of polyneuropathies? Neurol Res 29(1):103–110

    PubMed  CAS  Google Scholar 

  • Hipkiss AR (2007) Could carnosine or related structures suppress Alzheimer’s disease? J Alzheimers Dis 11(2):229–240

    PubMed  CAS  Google Scholar 

  • Horie K, Miyata T, Yasuda T, Takeda A, Yasuda Y, Maeda K, Sobue G, Kurokawa K (1997) Immunohistochemical localization of advanced glycation end products, pentosidine, and carboxymethyllysine in lipofuscin pigments of Alzheimer’s disease and aged neurons. Biochem Biophys Res Commun 236(2):327–332

    PubMed  CAS  Google Scholar 

  • Hoyer S (1998) Is sporadic Alzheimer disease the brain type of non-insulin dependent diabetes mellitus? A challenging hypothesis. J Neural Transm 105(4–5):415–422

    PubMed  CAS  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490(1–3):115–125

    PubMed  CAS  Google Scholar 

  • Huijberts MS, Schaper NC, Schalkwijk CG (2008) Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev 24(Suppl 1):S19–S24

    Google Scholar 

  • Ilzecka J (2009) Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 120(2):119–122

    PubMed  CAS  Google Scholar 

  • Iwata H, Ukeda H, Maruyama T, Fujino T, Sawamura M (2004) Effect of carbonyl compounds on red blood cells deformability. Biochem Biophys Res Commun 321(3):700–706

    PubMed  CAS  Google Scholar 

  • Jerums G, Panagiotopoulos S, Forbes J, Osicka T, Cooper M (2003) Evolving concepts in advanced glycation, diabetic nephropathy, and diabetic vascular disease. Arch Biochem Biophys 419(1):55–62

    PubMed  CAS  Google Scholar 

  • Kalousova M, Zima T, Tesar V, Dusilova-Sulkova S, Skrha J (2005) Advanced glycoxidation end products in chronic diseases—clinical chemistry and genetic background. Mutat Res 579(1–2):37–46

    PubMed  CAS  Google Scholar 

  • Kato S, Takikawa M, Nakashima K, Hirano A, Cleveland DW, Kusaka H, Shibata N, Kato M, Nakano I, Ohama E (2000) New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (sod1) gene mutations: inclusions containing sod1 in neurons and astrocytes. Amyotroph Lateral Scler Other Motor Neuron Disord 1(3):163–184

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Shinpo K, Ogata A, Tsuji S, Takeuchi M, Makita Z, Tashiro K (2002) Detection of n epsilon-(carboxymethyl)lysine (cml) and non-cml advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotroph Lateral Scler Other Motor Neuron Disord 3(2):63–68

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Shinpo K, Takeuchi M, Yamagishi S, Makita Z, Sasaki N, Tashiro K (2003) Glycation—a sweet tempter for neuronal death. Brain Res Brain Res Rev 41(2–3):306–323

    PubMed  CAS  Google Scholar 

  • Kimura T, Takamatsu J, Araki N, Goto M, Kondo A, Miyakawa T, Horiuchi S (1995) Are advanced glycation end-products associated with amyloidosis in Alzheimer’s disease? Neuroreport 6(6):866–868

    PubMed  CAS  Google Scholar 

  • King RH (2001) The role of glycation in the pathogenesis of diabetic polyneuropathy. Mol Pathol 54(6):400–408

    PubMed  CAS  Google Scholar 

  • Ko LW, Ko EC, Nacharaju P, Liu WK, Chang E, Kenessey A, Yen SH (1999) An immunochemical study on tau glycation in paired helical filaments. Brain Res 830(2):301–313

    PubMed  CAS  Google Scholar 

  • Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29(4):494–511

    PubMed  CAS  Google Scholar 

  • Krautwald M, Münch G (2010) Advanced glycation end products as biomarkers and gerontotoxins—a basis to explore methylglyoxal-lowering agents for Alzheimer’s disease? Exp Gerontol 45:744–751

    PubMed  CAS  Google Scholar 

  • Kuhla B, Loske C, Garcia De Arriba S, Schinzel R, Huber J, Münch G (2004) Differential effects of “advanced glycation endproducts” and beta-amyloid peptide on glucose utilization and atp levels in the neuronal cell line sh-sy5y. J Neural Transm 111(3):427–439

    PubMed  CAS  Google Scholar 

  • Langemann H, Kabiersch A, Newcombe J (1992) Measurement of low-molecular-weight antioxidants, uric acid, tyrosine and tryptophan in plaques and white matter from patients with multiple sclerosis. Eur Neurol 32(5):248–252

    PubMed  CAS  Google Scholar 

  • Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269(34):21614–21619

    PubMed  CAS  Google Scholar 

  • Loske C, Neumann A, Cunningham AM, Nichol K, Schinzel R, Riederer P, Münch G (1998) Cytotoxicity of advanced glycation endproducts is mediated by oxidative stress. J Neural Transm 105(8–9):1005–1015

    PubMed  CAS  Google Scholar 

  • Loske C, Gerdemann A, Schepl W, Wycislo M, Schinzel R, Palm D, Riederer P, Münch G (2000) Transition metal-mediated glycoxidation accelerates cross-linking of beta-amyloid peptide. Eur J Biochem 267(13):4171–4178

    PubMed  CAS  Google Scholar 

  • Lukic IK, Humpert PM, Nawroth PP, Bierhaus A (2008) The rage pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci 1126:76–80

    PubMed  CAS  Google Scholar 

  • Lüth HJ, Ogunlade V, Kuhla B, Kientsch-Engel R, Stahl P, Webster J, Arendt T, Münch G (2005) Age- and stage-dependent accumulation of advanced glycation end products in intracellular deposits in normal and Alzheimer’s disease brains. Cereb Cortex 15(2):211–220

    PubMed  Google Scholar 

  • Miyata S, Liu BF, Shoda H, Ohara T, Yamada H, Suzuki K, Kasuga M (1997) Accumulation of pyrraline-modified albumin in phagocytes due to reduced degradation by lysosomal enzymes. J Biol Chem 272(7):4037–4042

    PubMed  CAS  Google Scholar 

  • Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211(4481):491–493

    PubMed  CAS  Google Scholar 

  • Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173(3):932–939

    PubMed  CAS  Google Scholar 

  • Münch G, Taneli Y, Schraven E, Schindler U, Schinzel R, Palm D, Riederer P (1994) The cognition-enhancing drug tenilsetam is an inhibitor of protein crosslinking by advanced glycosylation. J Neural Transm Park Dis Dement Sect 8(3):193–208

    PubMed  Google Scholar 

  • Münch G, Mayer S, Michaelis J, Hipkiss AR, Riederer P, Muller R, Neumann A, Schinzel R, Cunningham AM (1997a) Influence of advanced glycation end-products and age-inhibitors on nucleation-dependent polymerization of beta-amyloid peptide. Biochim Biophys Acta 1360(1):17–29

    PubMed  Google Scholar 

  • Münch G, Thome J, Foley P, Schinzel R, Riederer P (1997b) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Brain Res Rev 23(1–2):134–143

    PubMed  Google Scholar 

  • Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA, Perry G, Riederer P (1998) Alzheimer’s disease–synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105(4–5):439–461

    PubMed  Google Scholar 

  • Münch G, Schicktanz D, Behme A, Gerlach M, Riederer P, Palm D, Schinzel R (1999) Amino acid specificity of glycation and protein-age crosslinking reactivities determined with a dipeptide spot library. Nat Biotechnol 17(10):1006–1010

    PubMed  Google Scholar 

  • Münch G, Lüth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of alpha-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20(3–4):253–257

    PubMed  Google Scholar 

  • Muscat S, Pelka J, Hegele J, Weigle B, Münch G, Pischetsrieder M (2007) Coffee and maillard products activate nf-kappab in macrophages via h(2)o(2) production. Mol Nutr Food Res 51:525–535

    PubMed  CAS  Google Scholar 

  • Obrosova IG (2002) How does glucose generate oxidative stress in peripheral nerve? Int Rev Neurobiol 50:3–35

    PubMed  CAS  Google Scholar 

  • Obrosova IG (2003) Update on the pathogenesis of diabetic neuropathy. Curr Diab Rep 3(6):439–445

    PubMed  Google Scholar 

  • Obrosova IG (2009) Diabetes and the peripheral nerve. Biochim Biophys Acta 1792(10):931–940

    PubMed  CAS  Google Scholar 

  • Obrosova IG, Li F, Abatan OI, Forsell MA, Komjati K, Pacher P, Szabo C, Stevens MJ (2004) Role of poly(adp-ribose) polymerase activation in diabetic neuropathy. Diabetes 53(3):711–720

    PubMed  CAS  Google Scholar 

  • Olah J, Orosz F, Keseru GM, Kovari Z, Kovacs J, Hollan S, Ovadi J (2002) Triosephosphate isomerase deficiency: a neurodegenerative misfolding disease. Biochem Soc Trans 30(2):30–38

    PubMed  CAS  Google Scholar 

  • Orosz F, Olah J, Alvarez M, Keseru GM, Szabo B, Wagner G, Kovari Z, Horanyi M, Baroti K, Martial JA, Hollan S, Ovadi J (2001) Distinct behavior of mutant triosephosphate isomerase in hemolysate and in isolated form: molecular basis of enzyme deficiency. Blood 98(10):3106–3112

    PubMed  CAS  Google Scholar 

  • Ortwerth BJ, James H, Simpson G, Linetsky M (1998) The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones. Biochem Biophys Res Commun 245(1):161–165

    PubMed  CAS  Google Scholar 

  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the rotterdam study. Neurology 53(9):1937–1942

    PubMed  CAS  Google Scholar 

  • Pacher P, Obrosova IG, Mabley JG, Szabo C (2005) Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 12(3):267–275

    PubMed  CAS  Google Scholar 

  • Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7(9):710–723

    PubMed  CAS  Google Scholar 

  • Peppa M, Stavroulakis P, Raptis SA (2009) Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen 17(4):461–472

    PubMed  Google Scholar 

  • Rabbani N, Thornalley PJ (2008) Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress. Biochem Soc Trans 36(Pt 5):1045–1050

    PubMed  CAS  Google Scholar 

  • Rabbani N, Alam SS, Riaz S, Larkin JR, Akhtar MW, Shafi T, Thornalley PJ (2009) High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia 52(2):208–212

    PubMed  CAS  Google Scholar 

  • Reddy VP, Garrett MR, Perry G, Smith MA (2005) Carnosine: a versatile antioxidant and antiglycating agent. Sci Aging Knowledge Environ 18:pe12

    Google Scholar 

  • Rong LL, Yan SF, Wendt T, Hans D, Pachydaki S, Bucciarelli LG, Adebayo A, Qu W, Lu Y, Kostov K, Lalla E, Yan SD, Gooch C, Szabolcs M, Trojaborg W, Hays AP, Schmidt AM (2004) Rage modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J 18(15):1818–1825

    PubMed  CAS  Google Scholar 

  • Rong LL, Gooch C, Szabolcs M, Herold KC, Lalla E, Hays AP, Yan SF, Yan SS, Schmidt AM (2005) Rage: a journey from the complications of diabetes to disorders of the nervous system - striking a fine balance between injury and repair. Restor Neurol Neurosci 23(5–6):355–365

    PubMed  CAS  Google Scholar 

  • Said G (2007) Diabetic neuropathy—a review. Nat Clin Pract Neurol 3(6):331–340

    PubMed  Google Scholar 

  • Sakaguchi T, Yan SF, Yan SD, Belov D, Rong LL, Sousa M, Andrassy M, Marso SP, Duda S, Arnold B, Liliensiek B, Nawroth PP, Stern DM, Schmidt AM, Naka Y (2003) Central role of rage-dependent neointimal expansion in arterial restenosis. J Clin Invest 111(7):959–972

    PubMed  CAS  Google Scholar 

  • Salkovic-Petrisic M, Hoyer S (2007) Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. J Neural Transm Suppl 72:217–233

    PubMed  CAS  Google Scholar 

  • Sasaki N, Fukatsu R, Tsuzuki K, Hayashi Y, Yoshida T, Fujii N, Koike T, Wakayama I, Yanagihara R, Garruto R, Amano N, Makita Z (1998) Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J Pathol 153(4):1149–1155

    PubMed  CAS  Google Scholar 

  • Sasaki N, Takeuchi M, Chowei H, Kikuchi S, Hayashi Y, Nakano N, Ikeda H, Yamagishi S, Kitamoto T, Saito T, Makita Z (2002) Advanced glycation end products (age) and their receptor (rage) in the brain of patients with creutzfeldt-jakob disease with prion plaques. Neurosci Lett 326(2):117–120

    PubMed  CAS  Google Scholar 

  • Schneider AS (2000) Triosephosphate isomerase deficiency: historical perspectives and molecular aspects. Baillieres Best Pract Res Clin Haematol 13(1):119–140

    PubMed  CAS  Google Scholar 

  • Sebekova K, Schinzel R, Ling Simm HA, Xiang G, Gekle M, Münch G, Vamvakas S, Heidland A (1998) Advanced glycated albumin impairs protein degradation in the kidney proximal tubules cell line llc-pk1. Cell Mol Biol (Noisy-le-grand) 44(7):1051–1060

    CAS  Google Scholar 

  • Shibata N, Hirano A, Kato S, Nagai R, Horiuchi S, Komori T, Umahara T, Asayama K, Kobayashi M (1999) Advanced glycation endproducts are deposited in neuronal hyaline inclusions: a study on familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Acta Neuropathol (Berl) 97(3):240–246

    CAS  Google Scholar 

  • Shibata N, Hirano A, Hedley-Whyte ET, Dal Canto MC, Nagai R, Uchida K, Horiuchi S, Kawaguchi M, Yamamoto T, Kobayashi M (2002a) Selective formation of certain advanced glycation end products in spinal cord astrocytes of humans and mice with superoxide dismutase-1 mutation. Acta Neuropathol (Berl) 104(2):171–178

    CAS  Google Scholar 

  • Shibata N, Oda H, Hirano A, Kato Y, Kawaguchi M, Dal Canto MC, Uchida K, Sawada T, Kobayashi M (2002b) Molecular biological approaches to neurological disorders including knockout and transgenic mouse models. Neuropathology 22(4):337–349

    PubMed  Google Scholar 

  • Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355

    PubMed  CAS  Google Scholar 

  • Smith MA, Perry G (1994) Alzheimer disease: an imbalance of proteolytic regulation? Med Hypotheses 42(4):277–279

    PubMed  CAS  Google Scholar 

  • Smith MA, Taneda S, Richey PL, Miyata S, Yan SD, Stern D, Sayre LM, Monnier VM, Perry G (1994) Advanced maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci USA 91(12):5710–5714

    PubMed  CAS  Google Scholar 

  • Smith MA, Monnier VM, Sayre LM, Perry G (1995) Amyloidosis, advanced glycation end products and Alzheimer disease. Neuroreport 6(12):1595–1596

    PubMed  CAS  Google Scholar 

  • Smith MA, Sayre LM, Perry G (1996a) Diabetes mellitus and Alzheimer’s disease: glycation as a biochemical link. Diabetologia 39(2):247

    PubMed  CAS  Google Scholar 

  • Smith MA, Tabaton M, Perry G (1996b) Early contribution of oxidative glycation in Alzheimer disease. Neurosci Lett 217(2–3):210–211

    PubMed  CAS  Google Scholar 

  • Southern L, Williams J, Esiri MM (2007) Immunohistochemical study of n-epsilon-carboxymethyl lysine (cml) in human brain: relation to vascular dementia. BMC Neurol 7:35

    PubMed  Google Scholar 

  • Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G (2009) Advanced glycation endproducts and their receptor rage in Alzheimer’s disease. Neurobiol Aging 247:809–814

    Google Scholar 

  • Sternberg Z, Weinstock-Guttman B, Hojnacki D, Zamboni P, Zivadinov R, Chadha K, Lieberman A, Kazim L, Drake A, Rocco P, Grazioli E, Munschauer F (2008) Soluble receptor for advanced glycation end products in multiple sclerosis: a potential marker of disease severity. Mult Scler 14(6):759–763

    PubMed  CAS  Google Scholar 

  • Stolzing A, Widmer R, Jung T, Voss P, Grune T (2006) Degradation of glycated bovine serum albumin in microglial cells. Free Radic Biol Med 40(6):1017–1027

    PubMed  CAS  Google Scholar 

  • Sugimoto K, Yasujima M, Yagihashi S (2008) Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des 14(10):953–961

    PubMed  CAS  Google Scholar 

  • Takamiya R, Takahashi M, Myint T, Park YS, Miyazawa N, Endo T, Fujiwara N, Sakiyama H, Misonou Y, Miyamoto Y, Fujii J, Taniguchi N (2003) Glycation proceeds faster in mutated cu, zn-superoxide dismutases related to familial amyotrophic lateral sclerosis. FASEB J 17(8):938–940

    PubMed  CAS  Google Scholar 

  • Takedo A, Yasuda T, Miyata T, Mizuno K, Li M, Yoneyama S, Horie K, Maeda K, Sobue G (1996) Immunohistochemical study of advanced glycation end products in aging and Alzheimer’s disease brain. Neurosci Lett 221(1):17–20

    PubMed  CAS  Google Scholar 

  • Thome J, Kornhuber J, Münch G, Schinzel R, Taneli Y, Zielke B, Rosler M, Riederer P (1996) [new hypothesis on etiopathogenesis of Alzheimer syndrome. Advanced glycation end products (ages)]. Nervenarzt 67(11):924–929

    PubMed  CAS  Google Scholar 

  • Thornalley PJ (1988) Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem J 254(3):751–755

    PubMed  CAS  Google Scholar 

  • Thornalley PJ (2002) Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 50:37–57

    PubMed  CAS  Google Scholar 

  • Thornalley PJ (2005) The potential role of thiamine (vitamin b1) in diabetic complications. Curr Diabetes Rev 1(3):287–298

    PubMed  CAS  Google Scholar 

  • Thorpe SR, Baynes JW (1996) Role of the maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging 9(2):69–77

    PubMed  CAS  Google Scholar 

  • Toth C, Martinez J, Zochodne DW (2007a) Rage, diabetes, and the nervous system. Curr Mol Med 7(8):766–776

    PubMed  CAS  Google Scholar 

  • Toth C, Rong LL, Yang C, Martinez J, Song F, Ramji N, Brussee V, Liu W, Durand J, Nguyen MD, Schmidt AM, Zochodne DW (2007b) Rage and experimental diabetic neuropathy. Diabetes 57:1002–1017

    PubMed  Google Scholar 

  • Toth C, Rong LL, Yang C, Martinez J, Song F, Ramji N, Brussee V, Liu W, Durand J, Nguyen MD, Schmidt AM, Zochodne DW (2008) Receptor for advanced glycation end products (rages) and experimental diabetic neuropathy. Diabetes 57(4):1002–1017

    PubMed  CAS  Google Scholar 

  • Vallianou N, Evangelopoulos A, Koutalas P (2009) Alpha-lipoic acid and diabetic neuropathy. Rev Diabet Stud 6(4):230–236

    PubMed  Google Scholar 

  • Vicente Miranda H, Outeiro TF (2010) The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol 221(1):13–25

    PubMed  Google Scholar 

  • Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM, Lastoskie C, Feldman EL (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148(2):548–558

    PubMed  CAS  Google Scholar 

  • Vinik A, Ullal J, Parson HK, Casellini CM (2006) Diabetic neuropathies: clinical manifestations and current treatment options. Nat Clin Pract Endocrinol Metab 2(5):269–281

    PubMed  CAS  Google Scholar 

  • Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91(11):4766–4770

    PubMed  CAS  Google Scholar 

  • Webster J, Urban C, Berbaum K, Loske C, Alpar A, Gartner U, de Arriba SG, Arendt T, Münch G (2005) The carbonyl scavengers aminoguanidine and tenilsetam protect against the neurotoxic effects of methylglyoxal. Neurotox Res 7(1–2):95–101

    PubMed  CAS  Google Scholar 

  • Wilmshurst JM, Wise GA, Pollard JD, Ouvrier RA (2004) Chronic axonal neuropathy with triosephosphate isomerase deficiency. Pediatr Neurol 30(2):146–148

    PubMed  Google Scholar 

  • Wolff SP, Bascal ZA, Hunt JV (1989) “Autoxidative glycosylation”: free radicals and glycation theory. Prog Clin Biol Res 304:259–275

    PubMed  CAS  Google Scholar 

  • Wong A, Lüth HJ, Deuther-Conrad W, Dukic-Stefanovic S, Gasic-Milenkovic J, Arendt T, Münch G (2001) Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Res 920(1–2):32–40

    PubMed  CAS  Google Scholar 

  • Wu S, Ren J (2006) Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and tnf-alpha. Neurosci Lett 394(2):158–162

    PubMed  CAS  Google Scholar 

  • Yagihashi S, Yamagishi S, Wada R (2007) Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. Diabetes Res Clin Pract 77(Suppl 1):S184–S189

    PubMed  CAS  Google Scholar 

  • Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, Scott CW, Caputo C, Frappier T, Smith MA et al (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 91(16):7787–7791

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council (NHMRC), the J.O. and J.R. Wicking Foundation and Alzheimer’s Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Münch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münch, G., Westcott, B., Menini, T. et al. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 42, 1221–1236 (2012). https://doi.org/10.1007/s00726-010-0777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0777-y

Keywords

Navigation