Skip to main content
Log in

Potential therapeutic radiotracers: preparation, biodistribution and metabolic characteristics of 177Lu-labeled cyclic RGDfK dimer

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In this study, we reported the preparation and evaluation of 177Lu-DOTA-RGD2, 177Lu-DOTA-Bz-RGD2 and 177Lu-DTPA-Bz-RGD2 (RGD2 = E[c(RGDfK)]2) as a potential therapeutic radiotracers for the treatment of integrin αvβ3-positive tumors. The BALB/c nude mice bearing the U87MG human glioma xenografts were used to evaluate the biodistribution characteristics and excretion kinetics of 177Lu-DOTA-RGD2, 177Lu-DOTA-Bz-RGD2 and 177Lu-DTPA-Bz-RGD2. It was found that there were no major differences in their lipophilicity and biodistribution characteristics, particularly at latter time points. A major advantage of using DTPA-Bz as the bifunctional chelator (BFC) was its high radiolabeling efficiency (fast and high yield radiolabeling) at room temperature. Using DOTA and DOTA-Bz as BFCs, the radiolabeling kinetics was slow, and heating at 100°C and higher DOTA-conjugate concentration were needed for successful 177Lu-labeling. Therefore, DTPA-Bz is an optimal BFC for routine preparation of 177Lu-labeled cyclic RGDfK peptides, and 177Lu-DTPA-Bz-RGD2 is worthy of further investigation for targeted radiotherapy of integrin αvβ3-positive tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTA-Bz:

2-(p-Isothiocyanobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

DTPA-Bz:

2-(p-Isothiocyanobenzyl)diethylenetriaminepentaacetic acid

References

  • Abdollahi A, Griggs DW, Zieher H, Roth A, Lipson KE, Saffrich R, Gröne H-J, Hallahan DE, Reisfeld RA, Debus J et al (2005) Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 11(17):6270–6279

    Article  CAS  PubMed  Google Scholar 

  • Alghisi GC, Rüegg C (2006) Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium 13(2):113–135

    Article  CAS  PubMed  Google Scholar 

  • Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ et al (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 12(13):3942–3949

    Article  CAS  PubMed  Google Scholar 

  • Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, Watzlowik P, Wester HJ, Haubner R, Schwaiger M (2007) [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13(22 Pt 1):6610–6616

    Article  CAS  PubMed  Google Scholar 

  • Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23(8):957–980

    Article  CAS  PubMed  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Niu G, Chen X (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14(28):2943–2973

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Liu S, Hou Y, Tohme M, Park R, Bading JR, Conti PS (2004) MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 6(5):350–359

    Article  PubMed  Google Scholar 

  • de Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, Visser TJ, Jermann E, Behe M, Powell P et al (1997) Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0, d-Phe1, Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 24(4):368–371

    Article  PubMed  Google Scholar 

  • de Keizer B, van Aken MO, Feelders RA, de Herder WW, Kam BL, van Essen M, Krenning EP, Kwekkeboom DJ (2008) Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0, Tyr3]octreotate. Eur J Nucl Med Mol Imaging 35(4):749–755

    Article  CAS  PubMed  Google Scholar 

  • Deshpande SV, DeNardo SJ, Kukis DL, Moi MK, McCall MJ, DeNardo GL, Meares CF (1990) Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 31(4):473–479

    CAS  PubMed  Google Scholar 

  • Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3(7):643–651

    Article  CAS  PubMed  Google Scholar 

  • Haubner RH, Wester HJ, Weber WA, Schwaiger M (2003) Radiotracer-based strategies to image angiogenesis. Q J Nucl Med 47(3):189–199

    CAS  PubMed  Google Scholar 

  • Jia B, Shi J, Yang Z, Xu B, Liu Z, Zhao H, Liu S, Wang F (2006) 99mTc-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin alphavbeta3 expression. Bioconjug Chem 17(4):1069–1076

    Article  CAS  PubMed  Google Scholar 

  • Jia B, Liu Z, Shi J, Yu Z, Yang Z, Zhao H, He Z, Liu S, Wang F (2008) Linker effects on biological properties of 111In-labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjug Chem 19(1):201–210

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Varner J (2004) Integrins: roles in cancer development and as treatment targets. Br J Cancer 90(3):561–565

    Article  CAS  PubMed  Google Scholar 

  • Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, McParland B, Cohen PS, Hui AM, Palmieri C et al (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49(6):879–886

    Article  PubMed  Google Scholar 

  • Liu S (2004) The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem Soc Rev 33(7):445–461

    Article  CAS  PubMed  Google Scholar 

  • Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 3(5):472–487

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Edwards DS (2001a) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjug Chem 12(1):7–34

    Article  PubMed  Google Scholar 

  • Liu S, Edwards DS (2001b) Synthesis and characterization of two (111)In-labeled DTPA-peptide conjugates. Bioconjug Chem 12(4):630–634

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Cheung E, Rajopadhye M, Williams NE, Overoye KL, Edwards DS (2001a) Isomerism and solution dynamics of (90)Y-labeled DTPA–biomolecule conjugates. Bioconjug Chem 12(1):84–91

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Cheung E, Ziegler MC, Rajopadhye M, Edwards DS (2001b) (90)Y and (177)Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy. Bioconjug Chem 12(4):559–568

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang F, Chen X (2008) Integrin alpha v beta 3-targeted cancer therapy. Drug Dev Res 69(6):329–339

    Article  CAS  Google Scholar 

  • Liu Z, Li Z, Cao Q, Liu S, Wang F, Chen X (2009a) Small-animal PET of tumors with 64Cu-labeled RGD-bombesin heterodimer. J Nucl Med 50(7):1168–1177

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu S, Wang F, Liu S, Chen X (2009b) Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG (4) linkers. Eur J Nucl Med Mol Imaging 36(8):1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Niu G, Shi J, Liu S, Wang F, Liu S, Chen X (2009c) (68)Ga-labeled cyclic RGD dimers with Gly(3) and PEG (4) linkers: promising agents for tumor integrin alpha (v)beta (3) PET imaging. Eur J Nucl Med Mol Imaging 36(6):947–957

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Yan Y, Chin FT, Wang F, Chen X (2009d) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52(2):425–432

    Article  CAS  PubMed  Google Scholar 

  • Moi MK, Meares CF, McCall MJ, Cole WC, DeNardo SJ (1985) Copper chelates as probes of biological systems: stable copper complexes with a macrocyclic bifunctional chelating agent. Anal Biochem 148(1):249–253

    Article  CAS  PubMed  Google Scholar 

  • Peterson JJ, Meares CF (1999) Enzymatic cleavage of peptide-linked radiolabels from immunoconjugates. Bioconjug Chem 10(4):553–557

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang L, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2008) Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem 51(24):7980–7990

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Kim YS, Zhai S, Liu Z, Chen X, Liu S (2009) Improving tumor uptake and pharmacokinetics of (64)Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjug Chem 20(4):750–759

    Article  CAS  PubMed  Google Scholar 

  • Stimmel JB, Kull FC Jr (1998) Samarium-153 and lutetium-177 chelation properties of selected macrocyclic and acyclic ligands. Nucl Med Biol 25(2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Stimmel JB, Stockstill ME, Kull FC Jr (1995) Yttrium-90 chelation properties of tetraazatetraacetic acid macrocycles, diethylenetriaminepentaacetic acid analogues, and a novel terpyridine acyclic chelator. Bioconjug Chem 6(2):219–225

    Article  CAS  PubMed  Google Scholar 

  • Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8(6):381–402

    Article  CAS  PubMed  Google Scholar 

  • Veeravagu A, Liu Z, Niu G, Chen K, Jia B, Cai W, Jin C, Hsu AR, Connolly AJ, Tse V et al (2008) Integrin alphavbeta3-targeted radioimmunotherapy of glioblastoma multiforme. Clin Cancer Res 14(22):7330–7339

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Shi J, Kim YS, Zhai S, Jia B, Zhao H, Liu Z, Wang F, Chen X, Liu S (2009) Improving tumor-targeting capability and pharmacokinetics of (99m)Tc-labeled cyclic RGD dimers with PEG(4) linkers. Mol Pharm 6(1):231–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shuang Liu at School of Health Sciences, Purdue University, for providing radiolabeling precursors. We also thank Dr. Zhi Yang at Department of Nuclear Medicine, Peking University School of Oncology, for the friendly assistance on the animal imaging. This work is supported, in part, by NSFC projects (30640067, 30870728, 30930030 and 30900373), an 863 project (2007AA02Z467) and a Grant from the Ministry of Science and Technology of China (2009ZX09103-733).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang.

Additional information

Jiyun Shi and Zhaofei Liu have contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Liu, Z., Jia, B. et al. Potential therapeutic radiotracers: preparation, biodistribution and metabolic characteristics of 177Lu-labeled cyclic RGDfK dimer. Amino Acids 39, 111–120 (2010). https://doi.org/10.1007/s00726-009-0382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0382-0

Keywords

Navigation