Skip to main content
Log in

Mouse and human indoleamine 2,3-dioxygenase display some distinct biochemical and structural properties

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The hemoprotein indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the most significant pathway for mammalian tryptophan metabolism. It has received considerable attention in recent years, particularly due to its dual role in immunity and the pathogenesis of many diseases. Reported here are differences and similarities between biochemical behaviour and structural features of recombinant human IDO and recombinant mouse IDO. Significant differences were observed in the conversion of substrates and pH stability. Differences in inhibitor potency and thermal stability were also noted. Secondary structural features were broadly similar but variation between species was apparent, particularly in the α-helix portion of the enzymes. With mouse models substituting for human diseases, the differences between mouse and human IDO must be recognised before applying experimental findings from one system to the next.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ball HJ, Sanchez-Perez A, Weiser S, Austin CJD, Astelbauer F, Miu J, McQuillan JA, Stocker R, Jermiin LS, Hunt NH (2007) Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396:203–213

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Yang JT, Chau KH (1974) Determination of helix and beta-form of proteins in aqueous-solution by circular-dichroism. Biochemistry 13:3350–3359

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom JD, Wurtman RJ (1971) Brain serotonin content—physiological dependence on plasma tryptophan levels. Science 173:149

    Article  PubMed  CAS  Google Scholar 

  • Habara-Ohkubo A, Takikawa O, Yoshida R (1991) Cloning and expression of a cDNA encoding mouse indoleamine 2,3-dioxygenase. Gene 105:221–227

    Article  PubMed  CAS  Google Scholar 

  • Hansen AM, Driussi C, Turner V, Takikawa O, Hunt NH (2000) Tissue distribution of indoleamine 2,3-dioxygenase in normal and malaria-infected tissue. Redox Rep 5:112–115

    Article  PubMed  CAS  Google Scholar 

  • Hansen AM, Ball HJ, Mitchell AJ, Miu J, Takikawa O, Hunt NH (2004) Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int J Parasitol 34:1309–1319

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Morrison PF (1997) Quantification of local de novo synthesis versus blood contributions to quinolinic acid concentrations in brain and systemic tissues. J Neurochem 68:280–288

    Article  PubMed  CAS  Google Scholar 

  • Hou DY, Muller AJ, Sharma MD, DuHadaway J, Banerjee T, Johnson M, Mellor AL, Prendergasts GC, Munn DH (2007) Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67:792–801

    Article  PubMed  CAS  Google Scholar 

  • Huang A, Fuchs D, Widner B, Glover C, Henderson DC, Allen-Mersh TG (2002) Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br J Cancer 86:1691–1696

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure—pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Littlejohn TK, Takikawa O, Truscott RJW, Walker MJ (2003) Asp(274) and His(346) are essential for heme binding and catalytic function of human indoleamine 2,3-dioxygenase. J Biol Chem 278:29525–29531

    Article  PubMed  CAS  Google Scholar 

  • Manuelpillai U, Nicholls T, Wallace EM, Phillips DJ, Guillemin G, Walker D (2003) Increased mRNA expression of kynurenine pathway enzymes in human placentae exposed to bacterial endotoxin. Adv Exp Med Biol 527:85–89

    PubMed  CAS  Google Scholar 

  • Medana IM, Day NPJ, Salahifar-Sabet H, Stocker R, Smythe G, Bwanaisa L, Njobvu A, Kayira K, Turner GDH, Taylor TE, Hunt NH (2003) Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis 188:844–849

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AJ, Hansen AM, Hee L, Ball HJ, Potter SM, Walker JC, Hunt NH (2005) Early cytokine production is associated with protection from murine cerebral malaria. Infect Immun 73:5645–5653

    Article  PubMed  CAS  Google Scholar 

  • Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E, Prendergast GC (2005a) Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11:312–319

    Article  PubMed  CAS  Google Scholar 

  • Muller AJ, Malachowski WP, Prendergast GC (2005b) Indoleamine 2,3-dioxygenase in cancer: targeting pathological immune tolerance with small-molecule inhibitors. Expert Opin Ther Targets 9:831–849

    Article  PubMed  CAS  Google Scholar 

  • Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  PubMed  CAS  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  CAS  Google Scholar 

  • Oberdorfer C, Adams O, MacKenzie CR, De Groot CJA, Daubener W (2003) Role of IDO activation in anti-microbial defense in human native astrocytes. Dev Tryptophan Serotonin Metab 527:15–26

    Google Scholar 

  • Potula R, Poluektova L, Knipe B, Chrastil J, Heilman D, Dou HY, Takikawa O, Munn DH, Gendelman HE, Persidsky Y (2005) Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 106:2382–2390

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Nomiyama S, Hirata F, Hayaishi O (1978) Indoleamine 2,3-dioxygenase—purification and some properties. J Biol Chem 253:4700–4706

    PubMed  CAS  Google Scholar 

  • Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto H, Oda S, Otsuki T, Hino T, Yoshida T, Shiro Y (2006) Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc Natl Acad Sci USA 103:2611–2616

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Tone S, Takikawa O, Kubo T, Kohno I, Minatogawa Y (2001) Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem J 355:425–429

    Article  PubMed  CAS  Google Scholar 

  • Takikawa O, Kuroiwa T, Yamazaki F, Kido R (1988) Mechanism of interferon-gamma action—characterization of indoleamine 2,3-dioxygenase in cultured human-cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem 263:2041–2048

    PubMed  CAS  Google Scholar 

  • Terajima M, Leporati AM (2005) Role of indoleamine 2,3-dioxygenase in antiviral activity of interferon-gamma against vaccinia virus. Viral Immunol 18:722–729

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Stocker R (1999) Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 4:199–220

    Article  PubMed  CAS  Google Scholar 

  • van der Sluijs KF, Nijhuis M, Levels H, Jansen HM, van der Poll T, Lutter R (2004) Inhibition of indoleamine-2,3-dioxygenase reduces bacterial outgrowth of S. pneumoniae in mice recovered from influenza infection. Immunobiology 209:344

    Google Scholar 

  • van der Sluijs KF, Nijhuis M, Levels JHM, Florquin S, Mellor AL, Jansen HM, van der Poll T, Lutter R (2006) Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J Infect Dis 193:214–222

    Article  PubMed  Google Scholar 

  • Yuasa HJ, Takubo M, Takahashi A, Hasegawa T, Noma H, Suzuki T (2007) Evolution of vertebrate indoleamine 2,3-dioxygenases. J Mol Evol 65:705–714

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council and the Sir Zelman Cowen Universities Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. D. Austin.

Electronic supplementary material

Figure (a)–(c): Substrate concentration versus turnover rate (V) in μmoles of kynurenine produced per mg of protein.

Figure a (TIF 112 kb)

Figure b (TIF 116 kb)

Figure c (TIF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austin, C.J.D., Astelbauer, F., Kosim-Satyaputra, P. et al. Mouse and human indoleamine 2,3-dioxygenase display some distinct biochemical and structural properties. Amino Acids 36, 99–106 (2009). https://doi.org/10.1007/s00726-008-0037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0037-6

Keywords

Navigation