Skip to main content
Log in

Superoxide- and NO-Dependent Mechanisms of the Reprogramming of Bone Marrow Cells by Tumor Cells

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Electron paramagnetic resonance (EPR) experiments in vitro; spin trapping of the reactive oxygen/nitrogen species (superoxide radicals and nitric oxide, NO); gel zymography measurements in the tumor tissues, in the healthy and tumor-affected bone marrow (BM) samples of rats are carried out. The superoxide and NO generation rates are derived; matrix metalloproteinases (MMP-2 and MMP-9) concentrations are measured. Their changes after the incubation of BM samples with Guérin carcinoma cells at 37 °C are defined. It is shown that the impact of tumor cells on BM manifests in the metabolic disorder, increased concentrations of active forms of MMP-2 and MMP-9, increased production of superoxide and NO radicals. Correlation between the appearance and intensity of the broad EPR signal at g = 2.2–2.4 with the concentrations of active forms of MMP-2 and MMP-9, NO and superoxide radicals’ rates is observed. The obtained spatial and temporal changes of the measured parameters demonstrate the usefulness of the potential application of EPR imaging to study the mechanisms of tumor invasion. The EPR signal may indicate the presence of distant metastases, may become a part of diagnostics and used for the estimation of the therapeutic treatments in the pre-clinical studies. It is proposed that labile iron pool is responsible for the appearance of the EPR signal in tumor and BM samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.K. Biswas, Tumor Microenvironment and Myelomonocytic Cells (InTech, Rijeka, 2012), p. 1

    Book  Google Scholar 

  2. L.M. Bystrom, M.L. Guzman, S. Rivella, Antioxid. Redox Sign. 20, 1917 (2014)

    Article  Google Scholar 

  3. S.V. Torti, F.M. Torti, Nat. Rev. Cancer 13, 342 (2013)

    Article  Google Scholar 

  4. R.L. Elliott, J.F. Head, J. Cancer Ther. 3, 278 (2012)

    Article  Google Scholar 

  5. V. Srinivasan, D.W. Spence, S.R. Pandi-Perumal, G.M. Brown, D.P. Cardinali, Int. J. Alzheimer’s Dis. 2011, 326320 (2011)

    Google Scholar 

  6. F. Sotgia, U.E. Martinez-Outschoorn, M.P. Lisanti, BMC Med. 9, 1741 (2011)

    Article  Google Scholar 

  7. D. Hanahan, R.A. Weinberg, Cell 100, 57 (2000)

    Article  Google Scholar 

  8. C. Gialeli, A.D. Theocharis, N.K. Karamanos, FEBS 278, 16 (2011)

    Article  Google Scholar 

  9. U.B. Hoffman, A.A. Eggert, K. Blass, E.B. Bröcker, J.C. Becker, Cancer Res. 63, 8221 (2003)

    Google Scholar 

  10. A.P. Burlaka, E.P. Sidorik, I.I. Ganusevich, S.P. Osinsky, Exp. Oncol. 28, 49 (2006)

    Google Scholar 

  11. A.P. Burlaka, E.P. Sidorik, I.I. Ganusevich, Y.M. Leschenko, S.P. Osinsky, Exp. Oncol. 28, 323 (2006)

    Google Scholar 

  12. A.P. Burlaka, E.P. Sidorik, Radical Forms of Oxygen and Nitrogen Oxide in the Tumors Process (Naukova dumka, Kiev, 2006), p. 1. (in Ukrainian)

    Google Scholar 

  13. J.B. Kim, R. Stein, M.J. O’Hare, Tumor Biol. 26, 173 (2005)

    Article  Google Scholar 

  14. A.P. Burlaka, I.I. Ganusevich, M.R. Gafurov, S.N. Lukin, E.P. Sidorik, Cancer Microenviron. 6, 273 (2013)

    Article  Google Scholar 

  15. A. Burlaka, M. Selyuk, M. Gafurov, S. Lukin, V. Potaskalova, E. Sidorik, e. Int. J. Rad. Biol. 90, 357 (2014)

    Article  Google Scholar 

  16. Z.P. Sofyina, A.B. Syrkin, A. Goldin, A. Klein, Evaluation of Antitumor Drugs in the USSR and USA (Medicine, Moscow, 1980), p. 1. (in Russian)

    Google Scholar 

  17. J.R. Mallard, M. Kent, Phys. Med. Biol. 14, 373 (1969)

    Article  Google Scholar 

  18. N.M. Emanuel, R.E. Kavetskii, B.N. Tarusov, E.P. Sidorik, Cancer Biophysics (Naukova dumka, Kiev, 1976), p. 1. (in Russian)

    Google Scholar 

  19. J.I. Azhipa, Medical-Biological Aspects in Electron Paramagnetic Resonance Method Applications (Nauka, Moscow, 1983), p. 1. (in Russian)

    Google Scholar 

  20. M.K. Pulatova, G.T. Rikhireva, Z.V. Kuropteva, Electron Spin Resonance in Molecular Radiobiology (Energoatomizdat, Moscow, 1989), p. 1. (in Russian)

    Google Scholar 

  21. R.G. Saifutdinov, L.I. Larina, T.I. Vakul’skaya, M.G. Voronkov, Electron Paramagnetic Resonance in Biochemistry and Medicine (Springer, New York, 2001). 1

    Google Scholar 

  22. S.S. Eaton, G.R. Eaton, L.J. Berliner, Biomedical EPR: Part A: Free Radicals, Metals, Medicine and Physiology (Springer, New York, 2005), p. 1

    Book  Google Scholar 

  23. S.S. Eaton, G.R. Eaton, L.J. Berliner, Biomedical EPR: Part B: Methodology, Instrumentation, and Dynamics (Springer, New York, 2005), p. 1

    Book  Google Scholar 

  24. W.R. Hagen, Biomolecular EPR Spectroscopy (CRC Press, Boca Raton, 2009), p. 1

    Google Scholar 

  25. G. Hanson, L. Berliner, High Resolution EPR. Applications to Metalloenzymes and Metals in Medicine (Springer, New York, 2009), p. 1

    Google Scholar 

  26. L.A. Krinitskaya, L.B. Volodarskii, Russ. Chem. Bull. 31, 401 (1982)

    Article  Google Scholar 

  27. S. Dikalov, M. Skatchkov, E. Bassenge, Biochem. Biophys. Res. Commun. 230, 54 (1997)

    Article  Google Scholar 

  28. A. Mülsch, P. Mordvintcev, A. Vanin, Neuroprotocols 1, 165 (1992)

    Article  Google Scholar 

  29. R. Fridman, T.R. Fuerst, R.E. Bird, M. Hoyhtya, M. Oelkuct, S. Kraus, D. Komarek, L.A. Liotta, M.L. Berman, W.G. Stetler-Stevenson, J. Biol. Chem. 267, 15398 (1992)

    Google Scholar 

  30. M. Toth, A. Sohail, R. Fridman, in Metastasis Research Protocols Methods in Molecular Biology, vol. 878, ed. by M. Dwek, S.A. Briiks (Springer, New York, 2012), p. 121

    Chapter  Google Scholar 

  31. N.M. Emanuel, Pure Appl. Chem. 52, 11 (1980)

    Article  Google Scholar 

  32. A.A. Konstantinov, E.K. Ruuge, FEBS Lett. 181, 137 (1977)

    Article  Google Scholar 

  33. N.M. Emanuel, A.N. Saprin, V.A. Shabalkin, L.E. Kozlova, K.E. Krugljakova, Nature 222, 165 (1965)

    Article  ADS  Google Scholar 

  34. S.A. Altshuler, B.M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements, 2nd edn. (Nauka, Moscow, 1972), pp. 380–549. (in Russian)

    Google Scholar 

  35. S.V. Yurtaeva, V.N. Efimov, N.I. Silkin, A.A. Rodionov, M.V. Burmistrov, A.V. Panov, A.A. Moroshek, Appl. Magn. Reson. 42, 299 (2012)

    Article  Google Scholar 

  36. A. Albini, M.B. Sporn, Nat. Rev. Cancer 7, 139 (2007)

    Article  Google Scholar 

  37. M. Arredondo, M.T. Nunez, Mol. Aspects Med. 26, 313 (2005)

    Article  Google Scholar 

  38. B.V. Yavkin, G.V. Mamin, S.B. Orlinskii, M.R. Gafurov, M.K. Salakhov, T.B. Biktagirov, E.S. Klimashina, V.I. Putlayev, YuD Tretyakov, N.I. Silkin, Phys. Chem. Chem. Phys. 14, 2246 (2012)

    Article  Google Scholar 

  39. T.B. Biktagirov, Y.A. Chelyshev, M.R. Gafurov, G.V. Mamin, S.B. Orlinskii, Y.N. Osin, M.K. Salakhov, J. Phys: Conf. Ser. 478, 012002 (2013)

    ADS  Google Scholar 

  40. M.R. Gafurov, T.B. Biktagirov, B.V. Yavkin, G.V. Mamin, Y.Y. Filippov, E.S. Klimashina, V.I. Putlayev, S.B. Orlinskii, JETP Lett. 99, 196 (2014)

    Article  ADS  Google Scholar 

  41. L.D. Landau, E.M. Lifshitz, Fluid Mechanics, Vol. 6 of a Course of Theoretical Physics (Pergamon Press, Oxford, 1959), pp. 474–480

    Google Scholar 

  42. P. Tracqui, Rep. Prog. Phys. 72, 056701 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by the subsidy of the Russian Government to support the Program of competitive Growth of Kazan Federal University among World’s Leading Academic Centers. We appreciate the support of Dr. Sergei Orlinskii and Dr. Georgy Mamin (Kazan) for their fruitful discussions of the results and support of the Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Burlaka or M. R. Gafurov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlaka, A.P., Ganusevich, I.I., Lukin, S.N. et al. Superoxide- and NO-Dependent Mechanisms of the Reprogramming of Bone Marrow Cells by Tumor Cells. Appl Magn Reson 45, 1261–1273 (2014). https://doi.org/10.1007/s00723-014-0610-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0610-y

Keywords

Navigation