Skip to main content
Log in

Effects of hemagglutinin amino acid substitutions in H9 influenza A virus escape mutants

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We assessed the pH optimum of fusion, HA thermostability, and in vitro replication kinetics of previously obtained influenza H9 escape mutants. The N198S mutation significantly increased the optimum pH of fusion. Four HA changes, S133N, T189A, N198D, and L226Q, were associated with a significant increase in HA thermostability compared to the wild-type virus. HA amino acid changes at positions 116, 133, 135, 157, 162, and 193 significantly decreased the replicative ability of H9 escape mutants in vitro. Monitoring of pleiotropic effects of the HA mutations found in H9 escape mutants is essential for accurate prediction of all possible outcomes of immune selection of H9 influenza A viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Homme PJ, Easterday BC, Anderson DP (1970) Avian influenza virus infections. II. Experimental epizootiology of influenza A-turkey-Wisconsin-1966 virus in turkeys. Avian Dis 14:240–247

    Article  CAS  PubMed  Google Scholar 

  2. Kawaoka Y, Chambers TM, Sladen WL, Webster RG (1988) Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 163:247–250

    Article  CAS  PubMed  Google Scholar 

  3. Peiris JS, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF (2001) Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J Virol 75:9679–9686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu C, Fan W, Wei R, Zhao H (2004) Isolation and identification of swine influenza recombinant A/Swine/Shandong/1/2003(H9N2) virus. Microbes Infect 6:919–925

    Article  CAS  PubMed  Google Scholar 

  5. Yu H, Hua RH, Wei TC, Zhou YJ, Tian ZJ, Li GX, Liu TQ, Tong GZ (2008) Isolation and genetic characterization of avian origin H9N2 influenza viruses from pigs in China. Vet Microbiol 131:82–92

    Article  CAS  PubMed  Google Scholar 

  6. Li C, Yu K, Tian G, Yu D, Liu L, Jing B, Ping J, Chen H (2005) Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340:70–83

    Article  CAS  PubMed  Google Scholar 

  7. Lin Z, Xu C, Liu B, Ji Y, Fu Y, Guo J, Zhu Q (2014) Analysis of the phylogeny of Chinese H9N2 avian influenza viruses and their pathogenicity in mice. Arch Virol 159:2575–2586

    Article  CAS  PubMed  Google Scholar 

  8. Matrosovich MN, Krauss S, Webster RG (2001) H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281:156–162

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, He X, Wang K, Chen J, Li Y, Fan J, Kong H, Gu C, Guan Y, Suzuki Y, Kawaoka Y, Liu L, Jiang Y, Tian G, Li Y, Bu Z, Chen H (2014) Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. PLoS Pathog 10:e1004508

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr RW, Shortridge KF (1999) Human infection with influenza H9N2. Lancet 354:916–917

    Article  CAS  PubMed  Google Scholar 

  11. Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH, Xu KM, Lim W, Webster RG, Yuen KY, Peiris JS, Guan Y (2005) Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43:5760–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang M, Fu CX, Zheng BJ (2009) Antibodies against H5 and H9 avian influenza among poultry workers in China. N Engl J Med 360:2583–2584

    Article  CAS  PubMed  Google Scholar 

  13. Pawar SD, Tandale BV, Raut CG, Parkhi SS, Barde TD, Gurav YK, Kode SS, Mishra AC (2012) Avian influenza H9N2 seroprevalence among poultry workers in Pune, India, 2010. PLoS One 7:e36374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blair PJ, Putnam SD, Krueger WS, Chum C, Wierzba TF, Heil GL, Yasuda CY, Williams M, Kasper MR, Friary JA, Capuano AW, Saphonn V, Peiris M, Shao H, Perez DR, Gray GC (2013) Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia. J Infect Public Health 6:69–79

    Article  PubMed  PubMed Central  Google Scholar 

  15. Coman A, Maftei DN, Krueger WS, Heil GL, Friary JA, Chereches RM, Sirlincan E, Bria P, Dragnea C, Kasler I, Gray GC (2013) Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers. J Infect Public Health 6:438–447

    Article  PubMed  Google Scholar 

  16. Gray GC, Ferguson DD, Lowther PE, Heil GL, Friary JA (2011) A national study of US bird banders for evidence of avian influenza virus infections. J Clin Virol 51:132–135

    Article  PubMed  PubMed Central  Google Scholar 

  17. Okoye J, Eze D, Krueger WS, Heil GL, Friary JA, Gray GC (2013) Serologic evidence of avian influenza virus infections among Nigerian agricultural workers. J Med Virol 85:670–676

    Article  PubMed  Google Scholar 

  18. Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, Zhou K, Zou S, Yang L, Chen T, Dong L, Bo H, Zhao X, Zhang Y, Lan Y, Bai T, Dong J, Li Q, Wang S, Zhang Y, Li H, Gong T, Shi Y, Ni X, Li J, Zhou K, Fan J, Wu J, Zhou X, Hu M, Wan J, Yang W, Li D, Wu G, Feng Z, Gao GF, Wang Y, Lin Q, Liu M, Shu Y (2014) Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 383:714–721

    Article  PubMed  Google Scholar 

  19. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Zhu Y (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897

    Article  CAS  PubMed  Google Scholar 

  20. Kaverin NV, Rudneva IA, Ilyushina NA, Lipatov AS, Krauss S, Webster RG (2004) Structural differences among hemagglutinins of influenza A virus subtypes are reflected in their antigenic architecture: analysis of H9 escape mutants. J Virol 78:240–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peiris JSM, Guan Y, Markwell D, Ghose P, Webster RG, Shortridge KF (2001) Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southeastern China: potential for genetic reassortment? J. Virol. 75:9679–9686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2001) X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci USA 98:11181–11186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2002) H5 avian and H9 swine influenza virus hemagglutinin structures: possible origin of influenza subtypes. EMBO J. 21:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudneva IA, Ilyushina NA, Timofeeva TA, Webster RG, Kaverin NV (2005) Restoration of virulence of escape mutants of H5 and H9 influenza viruses by their readaptation to mice. J Gen Virol 86:2831–2838

    Article  CAS  PubMed  Google Scholar 

  25. Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  26. Krenn BM, Egorov A, Romanovskaya-Romanko E, Wolschek M, Nakowitsch S, Ruthsatz T, Kiefmann B, Morokutti A, Humer J, Geiler J, Cinatl J, Michaelis M, Wressnigg N, Sturlan S, Ferko B, Batishchev OV, Indenbom AV, Zhu R, Kastner M, Hinterdorfer P, Kiselev O, Muster T, Romanova J (2011) Single HA2 mutation increases the infectivity and immunogenicity of a live attenuated H5N1 intranasal influenza vaccine candidate lacking NS1. PLoS One 6:e18577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palmer DF, Dowdle WR, Coleman MT, Schield GC (1975) Advanced laboratory techniques for influenza diagnosis. U.S. Department of Health, Education, and Welfare, immunology series no. 6. Centers for Disease Control, Atlanta

  28. Philpott M, Easterday BC, Hinshaw VS (1989) Neutralizing epitopes of the H5 hemagglutinin from a virulent avian influenza virus and their relationship to pathogenicity. J Virol 63:3453–3458

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaverin NV, Rudneva IA, Ilyushina NA, Varich NL, Lipatov AS, Smirnov YA, Govorkova EA, Gitelman AK, Lvov DK, Webster RG (2002) Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and the phenotypic variation of escape mutants. J Gen Virol 83:2497–2505

    Article  CAS  PubMed  Google Scholar 

  30. Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, Jayaraman A, Viswanathan K, Raman R, Sasisekharan R, Bennink JR, Yewdell JW (2009) Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 326:734–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Both GW, Shi CH, Kilbourne ED (1983) Hemagglutinin of swine influenza virus: a single amino acid change pleiotropically affects viral antigenicity and replication. Proc Natl Acad Sci USA 80:6996–7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Z, Zhou H, Jin H (2010) The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. Vaccine 28:4079–4085

    Article  CAS  PubMed  Google Scholar 

  33. Rudneva IA, Timofeeva TA, Ignatieva AV, Shilov AA, Krylov PS, Ilyushina NA, Kavein NV (2013) Pleiotropic effects of hemagglutinin amino acid substitutions of H5 influenza escape mutants. Virology 447:233–239

    Article  CAS  PubMed  Google Scholar 

  34. DuBois RM, Zaraket H, Reddivari M, Heath RJ, White SW, Russell CJ (2011) Acid stability of the hemagglutinin protein regulates H5N1 influenza virus pathogenicity. PLoS Pathogens 7:e1002398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Srinivasan K, Raman R, Jayaraman A, Viswanathan K, Sasisekharan R (2013) Quantitative characterization of glycan-receptor binding of H9N2 influenza A virus hemagglutinin. PLoS One 8:e59550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sorrell EM, Wan H, Araya Y, Song H, Perez DR (2009) Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proc Natl Acad Sci USA 106:7565–7570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subarrao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A (2000) Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 97:9654–9658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li KS, Xu KM, Peiris JSM, Poon LML, Yu KZ, Yen KY, Shortridge KF, Webster RG, Guan Y (2003) Characterization of H9 subtype influenza viruses from the ducks of southern China: a candidate for the next influenza pandemic in humans? J. Virol. 77:6988–6994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We dedicate this report to the memory of Dr. Nikolai V. Kaverin, M.D., Ph.D., who was a Professor and a Full Member of the Russian Academy of Sciences. Dr. Nikolai V. Kaverin was one of the most prominent Russian virologists, and as a Laboratory Head at the Ivanovsky Institute of Virology in Moscow, Russia, he has significantly contributed to the scientific knowledge of influenza virus biology and to influenza prevention in Russia.

We also thank Dr. Harry Smith (FDA) for excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia A. Ilyushina.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudneva, I.A., Timofeeva, T.A., Ignatieva, A.V. et al. Effects of hemagglutinin amino acid substitutions in H9 influenza A virus escape mutants. Arch Virol 161, 3515–3520 (2016). https://doi.org/10.1007/s00705-016-3038-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3038-x

Keywords

Navigation