Skip to main content
Log in

Fasting APO B48 levels are associated with microalbuminuria in patients with type 2 diabetes

  • Short Communication
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

In view of the high incidence of macrovascular diseases in patients with type 2 diabetes mellitus and microalbuminuria, the study evaluates the association of microalbuminuria with fasting plasma Apo B48 levels, a marker of the residual presence of intestinally derived TRLs lipoproteins, thought to be highly atherogenic. We studied 50 patients with type 2 diabetes aged 35–75 years. Exclusion criteria were overt macrovascular disease, overt nephropathy (Glomerular filtration rate (GFR) <45 ml/min/1.73 m2), or use of hypolipidemic agents. Anthropometry, fasting plasma lipids, plasma creatinine, and HbA1c were measured. Urinary albumin excretion was measured on a morning urine sample with the ELISA and expressed as albumin/creatinine ratio. GFR was estimated using the MDRD formula. The plasma fasting Apo B48 was measured by ELISA. Age, gender distribution, fasting plasma lipids, HbA1c, smoking status, plasma creatinine, estimate GFR, and the proportion of patients treated with insulin or antihypertensive drugs were similar for patients with or without microalbuminuria. People with microalbuminuria had longer diabetes duration (borderline significance) and significantly higher Apo B48 (1.765 ± 1.379 μg/ml vs. 1.022 ± 0.692 μg/ml, p = 0.01) than those without microalbuminuria. Multivariate logistic regression analysis confirmed that fasting Apo B48 levels were significantly associated with microalbuminuria independent of major confounders measured in the study. In patients with type 2 diabetes, microalbuminuria is associated with elevated Apo B48 levels, independent of major confounders; this may partly explain the excess cardiovascular risk of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rivellese AA, De Natale C, Di Marino L, Patti L, Iovine C, Coppola S, Del Prato S, Riccardi G, Annuzzi G (2004) Exogenous and endogenous postprandial lipid abnormalities in type 2 diabetic patients with optimal blood glucose control and optimal fasting triglyceride levels. J Clin Endocrinol Metab 89:2153–2159

    Article  PubMed  CAS  Google Scholar 

  2. Roche HM, Gibney MJ (2000) The impact of postprandial lipemia in accelerating atherothrombosis. J Cardiovasc Risk 7:317–324

    PubMed  CAS  Google Scholar 

  3. Karpe F (1999) Postprandial lipoprotein metabolism and atherosclerosis. J Intern Med 246:341–355

    Article  PubMed  CAS  Google Scholar 

  4. Phillips ML, Pullinger C, Kroes I, Kroes J, Hardman DA, Chen G, Curtiss LK, Gutierrez MM, Kane JP, Schumaker VN (1997) A single copy of apolipoprotein B-48 is present on the human chylomicron remnant. J Lipid Res 38:1170–1177

    PubMed  CAS  Google Scholar 

  5. Smith D, Watts GF, Dane-Stewart C, Mamo JC (1999) Post-prandial chylomicron response may be predicted by a single measurement of plasma apolipoprotein B48 in the fasting state. Eur J Clin Invest 29:204–209

    Article  PubMed  CAS  Google Scholar 

  6. Brown ML, Ramprasad MP, Umeda PK, Tanaka A, Kobayashi Y, Watanabe T, Shimoyamada H, Kuo WL, Li R, Song R, Bradley WA, Gianturco SH (2000) A macrophage receptor for apolipoprotein B48: cloning, expression, and atherosclerosis. Proc Natl Acad Sci USA 97:7488–7493

    Article  PubMed  CAS  Google Scholar 

  7. Flood C, Gustafsson M, Richardson PE, Harvey SC, Segrest JP, Borén J (2002) Identification of the proteoglycan binding site in apolipoprotein B48. J Biol Chem 277:32228–32233

    Article  PubMed  CAS  Google Scholar 

  8. Valdivielso P, Puerta S, Rioja J, Alonso I, Ariza MJ, Sánchez-Chaparro MA, Palacios R, González-Santos P (2010) Postprandial apolipoprotein B48 is associated with asymptomatic peripheral arterial disease: a study in patients with type 2 diabetes and controls. Clin Chim Acta 411:433–437

    Article  PubMed  CAS  Google Scholar 

  9. Tanimura K, Nakajima Y, Nagao M, Ishizaki A, Kano T, Harada T, Okajima F, Sudo M, Tamura H, Ishii S, Sugihara H, Yamashita S, Asai A, Oikawa S (2008) Association of serum apolipoprotein B48 level with the presence of carotid plaque in type 2 diabetes mellitus. Diabetes Res Clin Pract 81:338–344

    Article  PubMed  CAS  Google Scholar 

  10. Drury PL, Ting R, Zannino D, Ehnholm C, Flack J, Whiting M, Fassett R, Ansquer JC, Dixon P, Davis TM, Pardy C, Colman P, Keech A (2011) Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia 54:32–43

    Article  PubMed  CAS  Google Scholar 

  11. Guo L, Cheng Y, Wang X, Pan Q, Li H, Zhang L, Wang Y (2010) Association between microalbuminuria and cardiovascular disease in type 2 diabetes mellitus of the Beijing Han nationality. Acta Diabetol [Epub ahead of print]

  12. Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF (2011) The diabetic cardiomyopathy. Acta Diabetol 48:173–181

    Article  PubMed  Google Scholar 

  13. Esteghamati A, Rashidi A, Khalilzadeh O, Ashraf H, Abbasi M (2010) Metabolic syndrome is independently associated with microalbuminuria in type 2 diabetes. Acta Diabetol 47(2):125–130

    Article  PubMed  CAS  Google Scholar 

  14. Yazici D, Yavuz DG, Toprak A, Deyneli O, Akalin S (2010). Impaired diastolic function and elevated Nt-proBNP levels in type 1 diabetic patients without overt cardiovascular disease. Acta Diabetol [Epub ahead of print]

  15. Atkins RC, Zimmet P (2010) Diabetic kidney disease: act now or pay later. Acta Diabetol 47:1–4

    Article  PubMed  Google Scholar 

  16. Yamamoto T, Hirano T, Mori Y, Tokuno A, Nagashima M, Takada M, Morita R, Lee S, Hayashi T, Adachi M (2008) Significant increase of apolipoprotein B48 levels by a standard test meal in type 2 diabetic patients with nephropathy. J Atheroscler Thromb 15:199–205

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi T, Hirano T, Taira T, Tokuno A, Mori Y, Koba S, Adachi M (2008) Remarkable increase of apolipoprotein B48 level in diabetic patients with end-stage renal disease. Atherosclerosis 197:154–158

    Article  PubMed  CAS  Google Scholar 

  18. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    PubMed  CAS  Google Scholar 

  19. Kinoshita M, Kojima M, Matsushima T, Teramoto T (2005) Determination of apolipoprotein B-48 in serum by a sandwich ELISA. Clin Chim Acta 351:115–120

    Article  PubMed  CAS  Google Scholar 

  20. Tentolouris N, Stylianou A, Lourida E, Perrea D, Kyriaki D, Papavasiliou EC, Tselepis AD, Katsilambros N (2007) High postprandial triglyceridemia in patients with type 2 diabetes and microalbuminuria. J Lipid Res 48:218–225

    Article  PubMed  CAS  Google Scholar 

  21. De Man FH, Cabezas MC, Van Barlingen HH, Erkelens DW, de Bruin TW (1996) Triglyceride-rich lipoproteins in non-insulin-dependent diabetes mellitus: post-prandial metabolism and relation to premature atherosclerosis. Eur J Clin Invest 26:89–108

    Article  PubMed  Google Scholar 

  22. Valdivielso P, Hidalgo A, Rioja J, Aguilar I, Ariza MJ, González-Alegre T, González-Santos P (2007) Smoking and postprandial triglycerides are associated with vascular disease in patients with type 2 diabetes. Atherosclerosis 194:391–396

    Article  PubMed  CAS  Google Scholar 

  23. Teno S, Uto Y, Nagashima H, Endoh Y, Iwamoto Y, Omori Y, Takizawa T (2000) Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with type 2 diabetes. Diabetes Care 23:1401–1406

    Article  PubMed  CAS  Google Scholar 

  24. Hirano T, Sakaue T, Misaki A, Murayama S, Takahashi T, Okada K, Takeuchi H, Yoshino G, Adachi M (2003) Very low-density lipoprotein-apoprotein CI is increased in diabetic nephropathy: comparison with apoprotein CIII. Kidney Int 63:2171–2177

    Article  PubMed  CAS  Google Scholar 

  25. Kashiwazaki K, Hirano T, Yoshino G, Kurokawa M, Tajima H, Adachi M (1998) Decreased release of lipoprotein lipase is associated with vascular endothelial damage in NIDDM patients with microalbuminuria. Diabetes Care 21:2016–2020

    Article  PubMed  CAS  Google Scholar 

  26. Rutledge JC, Ng KF, Aung HH, Wilson DW (2010) Role of triglyceride-rich lipoproteins in diabetic nephropathy. Nat Rev Nephrol 6:361–370

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lapice.

Additional information

Communicated by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapice, E., Cipriano, P., Patti, L. et al. Fasting APO B48 levels are associated with microalbuminuria in patients with type 2 diabetes. Acta Diabetol 49, 409–412 (2012). https://doi.org/10.1007/s00592-012-0386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0386-1

Keywords

Navigation