Skip to main content
Log in

Femoral offset loss and internal arch restoration defect are correlated with intramedullary nail cut-out complications after pertrochanteric fractures: a case–control study

  • Original Article • HIP - TRAUMA
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background and purpose

In a previous study, we investigated the link between the femoral offset (FO) loss by trochanteric impaction (TI) and cut-out complication occurrence after pertrochanteric fractures. Three major factors are likely to drive to failure after intramedullary nailing (IN): fracture stability, reduction quality and osteosynthesis quality. We wanted to investigate the quality of the fracture reduction through the TI and the neck-shaft angle (NSA) measurement and correlate these parameters with the risk of mechanical failure occurrence.

Materials and methods

It was a retrospective multicentric one case–one control match design study with age and gender randomization. The cases presented a mechanical failure of nailing: \({\text{TI}} = 1 - \frac{{{\text{FO}}_{\text{fractured}} }}{{{\text{FO}}_{\text{healthy}} }}\) in percentage. Femoral rotation was taken into account, and all TI were rotation-corrected (TIcorrected). Rotation-corrected neck-shaft angles (NSAcorrected) were calculated. The neck-shaft angle gap between the fractured and the healthy sides (NSAgap) was a ratio: \({\text{NSA}}_{\text{gap}} = 1 - \frac{{{\text{NSA}}_{\text{corrected}} }}{{{\text{NSA}}_{\text{healthy}} }}\) in percentage. The tip–apex distance (TAD) was measured. Absolute values of TIcorrected and NSAgap were analyzed.

Results

Twenty-one cases and 21 controls were examined. The average TIcorrected rate was 30% for the cases and 11% for the controls (p = 0.007). A 13% TIcorrected threshold had maximum specificity and sensitivity, equal to 71%. The average TAD was 27 mm for cases and 19 mm for controls (p = 0.004). The average NSAgap rate was 7% for the case group and 4% for the control group (p = 0.009). The areas under the ROC curves for TIcorrected, TAD and NSAgap were 0.73, 0.73 and 0.66, respectively.

Interpretation

Closed reduction and exclusive implantation of IN do not seem optimal in case of FO or NSA restoration failure after pertrochanteric fractures.

Level of evidence

Level III, case–control study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Briot K, Maravic M, Roux C (2015) Changes in number and incidence of hip fractures over 12 years in France. Bone 81:131–137

    Article  Google Scholar 

  2. Parker MJ, Pryor GA (1996) Gamma versus DHS nailing for extracapsular femoral fractures. Meta-analysis of ten randomised trials. Int Orthop 20:163–171

    Article  CAS  Google Scholar 

  3. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064

    Article  CAS  Google Scholar 

  4. Pascarella R, Fantasia R, Maresca A, Bettuzzi C, Amendola L, Violini S et al (2016) How evolution of the nailing system improves results and reduces orthopedic complications: more than 2000 cases of trochanteric fractures treated with the Gamma Nail System. Musculoskelet Surg 100:1–8

    Article  CAS  Google Scholar 

  5. Murena L, Moretti A, Meo F, Saggioro E, Barbati G, Ratti C et al (2018) Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures: a retrospective study of 813 patients. Arch Orthop Trauma Surg 138:351–359

    Article  Google Scholar 

  6. Briot B (1980) Fractures trochantériennes récentes: anatomie pathologique et classifications. In: Fractures de l’extrémité supérieure du fémur, Cahiers d'enseignement de la SOFCOT, expansion scientifique française, 69–77

  7. De Bruijn K, den Hartog D, Tuinebreijer W, Roukema G (2012) Reliability of predictors for screw cut-out in intertrochanteric hip fractures. J Bone Joint Surg Am 94:1266–1272

    Article  Google Scholar 

  8. Biber R, Berger J, Bail HJ (2016) The art of trochanteric fracture reduction. Injury 47:S3–S6

    Article  Google Scholar 

  9. Geller JA, Saifi C, Morrison TA, Macaulay W (2010) Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop 34:719–722

    Article  Google Scholar 

  10. Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A (2013) Critical factors in cut-out complication after Gamma nail treatment of proximal femoral fractures. BMC Musculoskelet Disord 2(14):1

    Article  Google Scholar 

  11. Ciufo DJ, Zaruta DA, Lipof JS, Judd KT, Gorczyca JT, Ketz JP (2017) Risk factors associated with cephalomedullary nail cut-out in the treatment of trochanteric hip fractures. J Orthop Trauma 31:583–591

    Article  Google Scholar 

  12. Morvan A, Boddaert J, Cohen-Bittan J, Picard H, Pascal-Mousselard H, Khiami F (2018) Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Orthop Traumatol Surg Res 104:1183–1190

    Article  Google Scholar 

  13. Boukebous B, Guillon P, Vandenbussche E, Rousseau MA (2018) Correlation between femoral offset loss and dynamic hip screw cut-out complications after pertrochanteric fractures: a case-control study. Eur J Orthop Surg Traumatol 28:1321–1326

    Article  Google Scholar 

  14. Lechler P, Frink M, Gulati A, Murray D, Renkawitz T, Bücking B et al (2014) The influence of hip rotation on femoral offset in plain radiographs. Acta Orthop 85:389–395

    Article  Google Scholar 

  15. Buecking B, Boese CK, Seifert V, Ruchholtz S, Frink M, Lechler P (2015) Femoral offset following trochanteric femoral fractures: a prospective observational study. Injury 46:S88–S92

    Article  Google Scholar 

  16. Cleveland M, Bosworth DM, Thompson FR, Wilson HJ, Ishizuka T (1959) A ten-year analysis of intertrochanteric fractures of the femur. J Bone Joint Surg Am 4:1399–1408

    Article  Google Scholar 

  17. Kyle RF, Gustilo RB, Premer RF (1979) Analysis of six hundred and twenty-two intertrochanteric hip fractures. J Bone Joint Surg Am 61:216–221

    Article  CAS  Google Scholar 

  18. Gamma3 Trochanteric Nail. Surgical technique. Last updated April 2018. [Online]. https://www.stryker.com/us/en/trauma-and-extremities/products/gamma3.html. Accessed 28 June 2019

  19. Fogagnolo F, Kfuri M, Paccola CaJ (2004) Intramedullary fixation of pertrochanteric hip fractures with the short AO–ASIF proximal femoral nail. Arch Orthop Trauma Surg 124:31–38

    Article  CAS  Google Scholar 

  20. Chang S-M, Zhang Y-Q, Ma Z, Li Q, Dargel J, Eysel P (2015) Fracture reduction with positive medial cortical support: a key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch Orthop Trauma Surg 135:811–819

    Article  Google Scholar 

  21. Putz P, Coussaert E, Delvaux D, Long Pretz P, Thys R, Cantraine F (1990) Osteosynthesis of lesions of the proximal femur using dynamic screw plates. Multicenter study: 1871 cases. Int Orthop 14:285–292

    Article  CAS  Google Scholar 

  22. Hsueh K-K, Fang C-K, Chen C-M, Su Y-P, Wu H-F, Chiu F-Y (2010) Risk factors in cut-out of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1279

    Article  Google Scholar 

  23. Baird RP, O’Brien P, Cruickshank D (2014) Comparison of stable and unstable pertrochanteric femur fractures managed with 2- and 4-hole side plates. Can J Surg 57:327–330

    Article  Google Scholar 

  24. Hélin M, Pelissier A, Boyer P, Delory T, Estellat C, Massin P (2015) Does the PFNA™ nail limit impaction in unstable intertrochanteric femoral fracture? A 115 case-control series. Orthop Traumatol Surg Res. 101:45–51

    Article  Google Scholar 

  25. Schipper IB, Steyerberg EW, Castelein RM, van Vugt AB (2001) Reliability of the AO/ASIF classification for pertrochanteric femoral fractures. Acta Orthop Scand 72:36–41

    Article  CAS  Google Scholar 

  26. Li C, Xie B, Chen S, Lin G, Yang G, Zhang L (2016) The effect of local bone density on mechanical failure after internal fixation of pertrochanteric fractures. Arch Orthop Trauma Surg 136:223–232

    Article  Google Scholar 

  27. Fichman SG, Mäkinen TJ, Safir O, Vincent A, Lozano B, Kashigar A et al (2016) Arthroplasty for unstable pertrochanteric hip fractures may offer a lower re-operation rate as compared to cephalomedullary nailing. Int Orthop 40:15–20

    Article  Google Scholar 

  28. Mäkinen TJ, Gunton M, Fichman SG, Kashigar A, Safir O, Kuzyk PRT (2015) Arthroplasty for pertrochanteric hip fractures. Orthop Clin N Am 46:433–444

    Article  Google Scholar 

  29. Gupta RK, Gupta V, Gupta N (2012) Outcomes of osteoporotic trochanteric fractures treated with cement-augmented dynamic hip screw. Indian J Orthop 46:640–645

    Article  Google Scholar 

  30. Fensky F, Nüchtern JV, Kolb JP, Huber S, Rupprecht M, Jauch SY et al (2013) Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures-a biomechanical cadaver study. Injury 44:802–809

    Article  CAS  Google Scholar 

  31. Kammerlander C, Gebhard F, Meier C, Lenich A, Linhart W, Clasbrummel B et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury 42:1484–1490

    Article  CAS  Google Scholar 

  32. Claes L, Becker C, Simnacher M, Hoellen I (1995) Improvement in the primary stability of the dynamic hip screw osteosynthesis in unstable, pertrochanteric femoral fractures of osteoporotic bones by a new glass ionomer cement. Unfallchirurg 98:118–123

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Boukebous.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukebous, B., Flouzat-Lachaniette, C.H., Donadio, J. et al. Femoral offset loss and internal arch restoration defect are correlated with intramedullary nail cut-out complications after pertrochanteric fractures: a case–control study. Eur J Orthop Surg Traumatol 29, 1451–1460 (2019). https://doi.org/10.1007/s00590-019-02481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-019-02481-9

Keywords

Navigation