Skip to main content

Advertisement

Log in

The association of lumbar intervertebral disc calcification on plain radiographs with the UTE Disc Sign on MRI

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The pathogenesis and the clinical impact of disc calcification are not well known. Utilizing ultra-short time-to-echo (UTE) magnetic resonance imaging, the UTE Disc Sign (UDS) (i.e., hypo/hyper-intense disc band) was developed and found to be more significantly related to pain and disability than the conventional T2-weighted (T2W) MRI. It has been hypothesized that the UDS may represent mineralized deposits in the disc. The following study addressed the relationship between disc calcification on plain radiographs to that of the UDS on MRI.

Methods

A cross-sectional study was performed on 106 Southern Chinese subjects (50% male; mean age 52.3 years). Standing lateral plain radiographs as well as T2W and UTE MRI of L1–S1 (n = 530 discs) were performed of all subjects. Lateral radiographs were used to localize disc calcification of the lumbar spine, T2W MRI was utilized to assess disc degeneration based on a defined grading scheme, and the UTE MRI was implemented to detect the UDS (hyper- or hypo-intense band across a disc). Disc degeneration and UDS scores were summed to represent cumulative scores. Subject demographics and disability profiles (Oswestry Disability Index: ODI) were obtained.

Results

Disc calcification on plain radiographs was observed in 33.9% of subjects (55.5% males; mean age 54.3 years), whereas UDS was noted in 40.5% of subjects (51.1% males; mean age 55.0 years). Of these subjects, 66.6% calcification and 74.4% UDS occurred at the three lowest lumbar levels, while multilevel calcification and UDS involved 19.4 and 39.5%, respectively. 72.2% of subjects with plain radiographic disc calcification had corresponding UDS on UTE MRI (p < 0.001). Multilevel disc calcification on plain radiographs was associated with multilevel UDS (71.4%, p < 0.001). Both the number of calcified disc levels on plain radiographs and the number of UDS levels were also significantly and positively correlated with each other (r = 0.58, p < 0.001). Subjects with disc calcification and positive UDS as well as individuals with increased disc degeneration scores on T2 W MRI were significantly older (p < 0.05). The cumulative UDS score on UTE MRI significantly correlated with worse ODI scores (r = 0.31; p = 0.001), whereas cumulative disc calcification scores on plain radiographs did not (r = 0.15; p = 0.19).

Conclusions

This is the first study to compare the UDS on UTE MRI with disc calcification on plain radiographs. Disc calcification was correlated with the UDS on UTE, suggesting that the UDS may represent disc calcification. However, UTE MRI appears to be a more sensitive imaging modality in identifying subtle and unique disc changes that may not be revealed on plain radiographs or conventional MRI. This disconnect may rationalize the significant correlation of UTE with disability in comparison with the conventional imaging, further stressing its potential clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murray CJ, Barber RM, Foreman KJ et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet 386:2145–2191

    Article  PubMed  Google Scholar 

  2. Balague F, Pellise F (2016) Adolescent idiopathic scoliosis and back pain. Scoliosis Spinal Disord 11:27

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A (2006) Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: part I. Lumbar spine. Eur Spine J 15:720–730

    Article  PubMed  Google Scholar 

  4. Schneiderman G, Flannigan B, Kingston S, Thomas J, Dillin WH, Watkins RG (1987) Magnetic resonance imaging in the diagnosis of disc degeneration: correlation with discography. Spine (Phila Pa 1976) 12:276–281

    Article  CAS  Google Scholar 

  5. Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–1878

    Article  CAS  PubMed  Google Scholar 

  6. Brinjikji W, Luetmer P, Comstock B et al (2015) Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol 36:811–816

    Article  CAS  PubMed  Google Scholar 

  7. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73

    Article  CAS  PubMed  Google Scholar 

  8. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW (1990) Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 72:403–408

    Article  CAS  PubMed  Google Scholar 

  9. Maatta JH, Karppinen JI, Luk KD, Cheung KM, Samartzis D (2015) Phenotype profiling of Modic changes of the lumbar spine and its association with other MRI phenotypes: a large-scale population-based study. Spine J 15:1933–1942

    Article  PubMed  Google Scholar 

  10. Chou D, Samartzis D, Bellabarba C et al (2011) Degenerative magnetic resonance imaging changes in patients with chronic low back pain: a systematic review. Spine (Phila Pa 1976) 36:S43–S53

    Article  Google Scholar 

  11. Borthakur A, Maurer PM, Fenty M et al (2011) T1 rho magnetic resonance imaging and discography pressure as novel biomarkers for disc degeneration and low back pain. Spine (Phila Pa 1976) 36:2190–2196

    Article  Google Scholar 

  12. Dong Z, Andrews T, Xie C, Yokoo T (2015) Advances in MRI techniques and applications. Biomed Res Int 2015:139043

    PubMed  PubMed Central  Google Scholar 

  13. Pang H, Bow C, Cheung JPY, et al. (2017) The UTE Disc Sign on MRI: a novel imaging biomarker associated with degenerative spine changes, low back pain and disability. Spine [Epub ahead of print]

  14. Samartzis D, Borthakur A, Belfer I et al (2015) Novel diagnostic and prognostic methods for disc degeneration and low back pain. Spine J 15:1919–1932

    Article  PubMed  PubMed Central  Google Scholar 

  15. Illien-Junger S, Torre OM, Kindschuh WF, Chen X, Laudier DM, Iatridis JC (2016) AGEs induce ectopic endochondral ossification in intervertebral discs. Eur Cell Mater 32:257–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chanchairujira K, Chung CB, Kim JY et al (2004) Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and distribution and correlation with spinal degeneration. Radiology 230:499–503

    Article  PubMed  Google Scholar 

  17. Kerns S, Pope TL Jr, de Lange EE, Fechner RE, Keats TE, Cimmino C (1986) Annulus fibrosus calcification in the cervical spine: radiologic-pathologic correlation. Skelet Radiol 15:605–609

    Article  CAS  Google Scholar 

  18. Sonnabend DH, Taylor TK, Chapman GK (1982) Intervertebral disc calcification syndromes in children. J Bone Joint Surg Br 64:25–31

    Article  CAS  PubMed  Google Scholar 

  19. Melrose J, Burkhardt D, Taylor TKF et al (2009) Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease. Eur Spine J 18:479–489

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garg M, Kumar S, Satija B, Gupta R (2012) Pediatric intervertebral disc calcification: a no touch lesion. J Craniovertebr Junction Spine 3:23–25

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hristova GI, Jarzem P, Ouellet JA et al (2011) Calcification in human intervertebral disc degeneration and scoliosis. J Orthop Res 29:1888–1895

    Article  PubMed  Google Scholar 

  22. Liu MH, Sun C, Yao Y et al (2016) Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression. Sci Rep 6:25401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weinberger A, Myers AR (1978) Intervertebral disc calcification in adults: a review. Semin Arthritis Rheum 8:69–75

    Article  CAS  PubMed  Google Scholar 

  24. Cheng XG, Brys P, Nijs J et al (1996) Radiological prevalence of lumbar intervertebral disc calcification in the elderly: an autopsy study. Skeletal Radiol 25:231–235

    Article  CAS  PubMed  Google Scholar 

  25. Chou CW (1982) Pathological studies on calcification of the intervertebral discs. Nihon Seikeigeka Gakkai Zasshi 56:331–345

    CAS  PubMed  Google Scholar 

  26. Feinberg J, Boachie-Adjei O, Bullough PG, Boskey AL (1990) The distribution of calcific deposits in intervertebral discs of the lumbosacral spine. Clin Orthop Relat Res 254:303–310

    Google Scholar 

  27. Quint DJ, Tuite GF, Stern JD et al (1997) Computer-assisted measurement of lumbar spine radiographs. Acad Radiol 4:742–752

    Article  CAS  PubMed  Google Scholar 

  28. McCarthy EF, Frassica FJ (2014) Pathology of bone and joint disorders print and online bundle. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Cheung KM, Samartzis D, Karppinen J, Luk KD (2012) Are “patterns” of lumbar disc degeneration associated with low back pain?: new insights based on skipped level disc pathology. Spine (Phila Pa 1976) 37:E430–E438

    Article  Google Scholar 

  30. Samartzis D, Karppinen J, Mok F, Fong DY, Luk KD, Cheung KM (2011) A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg Am 93:662–670

    Article  PubMed  Google Scholar 

  31. Takatalo J, Karppinen J, Niinimaki J et al (2011) Does lumbar disc degeneration on MRI associate with low back symptom severity in young Finnish adults? Spine (Phila Pa 1976) 36:2180–2189

    Article  Google Scholar 

  32. Li Y, Samartzis D, Campbell DD et al (2016) Two subtypes of intervertebral disc degeneration distinguished by large-scale population-based study. Spine J 16:1079–1089

    Article  PubMed  Google Scholar 

  33. Liu H, Tao H, Luo Z (2009) Validation of the simplified Chinese version of the Oswestry Disability Index. Spine (Phila Pa 1976) 34:1211–1216 (discussion 1217)

    Article  Google Scholar 

  34. Vangeneugden T, Laenen A, Geys H, Renard D, Molenberghs G (2005) Applying concepts of generalizability theory on clinical trial data to investigate sources of variation and their impact on reliability. Biometrics 61:295–304

    Article  PubMed  Google Scholar 

  35. Vavken P, Ganal-Antonio AK, Shen FH, Chapman JR, Samartzis D (2015) Fundamentals of clinical outcomes assessment for spinal disorders: study designs, methodologies, and analyses. Glob Spine J 5:156–164

    Article  Google Scholar 

  36. Lappalainen AK, Vaittinen E, Junnila J, Laitinen-Vapaavuori O (2014) Intervertebral disc disease in Dachshunds radiographically screened for intervertebral disc calcifications. Acta Vet Scand 56:89

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stigen Ø, Kolbjørnsen Ø (2007) Calcification of intervertebral discs in the dachshund: a radiographic and histopathologic study of 20 dogs. Acta Vet Scand 49:39

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bagatur AE, Zorer G, Centel T (2001) Natural history of paediatric intervertebral disc calcification. Arch Orthop Trauma Surg 121:601–603

    Article  CAS  PubMed  Google Scholar 

  39. Dias MS, Pang D (1991) Juvenile intervertebral disc calcification: recognition, management, and pathogenesis. Neurosurgery 28:130–135

    Article  CAS  PubMed  Google Scholar 

  40. Poole AR, Matsui Y, Hinek A, Lee ER (1989) Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec 224:167–179

    Article  CAS  PubMed  Google Scholar 

  41. Du J, Carl M, Bae WC et al (2013) Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC). Osteoarthr Cartil 21:77–85

    Article  CAS  PubMed  Google Scholar 

  42. Schapira D, Goldsher D, Nahir M, Scharf Y (1988) Calcified thoracic disc with herniation of the nucleus pulposus in a child. Postgrad Med J 64:160–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spapens N, Wouters C, Moens P (2010) Thoracolumbar intervertebral disc calcifications in an 8-year-old boy: case report and review of the literature. Eur J Pediatr 169:577–580

    Article  PubMed  Google Scholar 

  44. Edgren W, Karaharju EO, Snellman O (1973) Intervertebral disc calcification with complete protrusion intraspongially. Acta Orthop Scand 44:663–667

    Article  CAS  PubMed  Google Scholar 

  45. Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS Prize winner: The anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine (Phila Pa 1976) 38:1491–1500

    Article  CAS  Google Scholar 

  46. Shao J, Yu M, Jiang L et al (2016) Differences in calcification and osteogenic potential of herniated discs according to the severity of degeneration based on Pfirrmann grade: a cross-sectional study. BMC Musculoskelet Disord 17:191

    Article  PubMed  PubMed Central  Google Scholar 

  47. Risbud MV, Shapiro IM (2014) Role of cytokines in intervertebral disc degeneration: pain and disc-content. Nat Rev Rheumatol 10:44–56

    Article  CAS  PubMed  Google Scholar 

  48. Alkhatib B, Rosenzweig DH, Krock E et al (2014) Acute mechanical injury of the human intervertebral disc: link to degeneration and pain. Eur Cell Mater 28:98–110 (discussion 110–111)

    Article  CAS  PubMed  Google Scholar 

  49. Rutsch F, Terkeltaub R (2005) Deficiencies of physiologic calcification inhibitors and low-grade inflammation in arterial calcification: lessons for cartilage calcification. Joint Bone Spine 72:110–118

    Article  PubMed  Google Scholar 

  50. Lee HL, Woo KM, Ryoo HM, Baek JH (2010) Tumor necrosis factor-alpha increases alkaline phosphatase expression in vascular smooth muscle cells via MSX2 induction. Biochem Biophys Res Commun 391:1087–1092

    Article  CAS  PubMed  Google Scholar 

  51. Tintut Y, Patel J, Parhami F, Demer LL (2000) Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102:2636–2642

    Article  CAS  PubMed  Google Scholar 

  52. Terkeltaub RA (2002) What does cartilage calcification tell us about osteoarthritis? J Rheumatol 29:411–415

    PubMed  Google Scholar 

  53. Shan Z, Chen H, Liu J, Ren H, Zhang X, Zhao F (2016) Does the high-intensity zone (HIZ) of lumbar intervertebral discs always represent an annular fissure? Eur Radiol 27:1267–1276

    Article  PubMed  Google Scholar 

  54. Nosikova Y, Santerre JP, Grynpas MD, Kandel RA (2013) Annulus fibrosus cells can induce mineralization: an in vitro study. Spine J 13:443–453

    Article  PubMed  Google Scholar 

  55. Iwasawa T, Iwasaki K, Sawada T et al (2006) Pathophysiological role of endothelin in ectopic ossification of human spinal ligaments induced by mechanical stress. Calcif Tissue Int 79:422–430

    Article  CAS  PubMed  Google Scholar 

  56. Tsukamoto N, Maeda T, Miura H et al (2006) Repetitive tensile stress to rat caudal vertebrae inducing cartilage formation in the spinal ligaments: a possible role of mechanical stress in the development of ossification of the spinal ligaments. J Neurosurg Spine 5:234–242

    Article  PubMed  Google Scholar 

  57. Durcan L, Bolster F, Kavanagh EC, McCarthy GM (2014) The structural consequences of calcium crystal deposition. Rheum Dis Clin North Am 40:311–328

    Article  PubMed  Google Scholar 

  58. Peng B, Wu W, Hou S, Li P, Zhang C, Yang Y (2005) The pathogenesis of discogenic low back pain. J Bone Joint Surg Br 87:62–67

    Article  CAS  PubMed  Google Scholar 

  59. Roberts S, Menage J, Eisenstein SM (1993) The cartilage end-plate and intervertebral disc in scoliosis: calcification and other sequelae. J Orthop Res 11:747–757

    Article  CAS  PubMed  Google Scholar 

  60. Bian Q, Jain A, Xu X et al (2016) Excessive activation of TGFβ by spinal instability causes vertebral endplate sclerosis. Sci Rep 6:27093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Samartzis D, Nishi N, Cologne J et al (2013) Ionizing radiation exposure and the development of soft-tissue sarcomas in atomic-bomb survivors. J Bone Joint Surg Am 95:222–229

    Article  PubMed  Google Scholar 

  62. Samartzis D, Nishi N, Hayashi M et al (2011) Exposure to ionizing radiation and development of bone sarcoma: new insights based on atomic-bomb survivors of Hiroshima and Nagasaki. J Bone Joint Surg Am 93:1008–1015

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dino Samartzis.

Ethics declarations

Conflict of interest

The authors have no financial or competing interests to disclose.

Funding

This work was supported by grants from the Hong Kong Theme-Based Research Scheme (T12-708/12N) and the Hong Kong Research Grants Council (777111).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehra, U., Bow, C., Cheung, J.P.Y. et al. The association of lumbar intervertebral disc calcification on plain radiographs with the UTE Disc Sign on MRI. Eur Spine J 27, 1049–1057 (2018). https://doi.org/10.1007/s00586-017-5312-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-017-5312-3

Keywords

Navigation