Skip to main content

Advertisement

Log in

Acute toxicity and histopathological changes in livers of frog tadpoles (Hoplobatrachus rugulosus) exposed to bioinsecticides derived from Azadirachta indica A. Juss., Stemona curtisii Hook.F., and Mammea siamensis

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Azadirachta indica A. Juss., Stemona curtisii Hook.F., and Mammea siamensis are popularly used as bioinsecticides by Thai farmers. To evaluate their safety on frog (Hoplobatrachus rugulosus) tadpoles, the ecologically and economically important species of Thailand, an acute static toxicity test was performed. The tadpoles (n = 10 per treatment group) were exposed to the bioinsecticides from A. indica (NSAI 5, 10, 15, 20, and 25 g/l) and the mixture of S. curtisii and M. siamensis (SCMS 0.8, 1.2, 1.6, 2.0, and 2.4 mg/l). It was found that the median lethal concentration (LC50) values at 96 h of the NSAI and the SCMS were 11.81 and 1.44 mg/l respectively. Hepatic failures were observed in tadpoles exposed to the NSAI and the SCMS. Histopathological changes included vacuolation, leukocyte infiltration, necrotic cell, and blood congestion. These lesions were more severe in the tadpoles treated with the NSAI or the SCMS at the high concentrations. Additionally, necrosis of bile duct epithelium, karyolysis, and sinusoidal dilation were apparently found in the tadpole exposed to 25 g/l of the NSAI, while the degeneration of bile duct was noted in the 1.6–2.4 mg/l of the SCMS-treated groups. However, the tadpoles exposed to 5 g/l of the NSAI showed only mild pathological changes in their livers. From a higher value of LC50 of the NSAI than the SCMS together with the mild histopathological changes in the tadpoles exposed to the low concentrations, thus the NSAI is less toxic to H. rugulosus tadpoles than the SCMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguinaga JY, Claudiano GS, Marcusso PF, Ikefuti C, Ortega GG, Eto SF, de Cruz C, Moraes JRE, Moraes FR, Fernandes JBK (2014) Acute toxicity and determination of the active constituents of aqueous extract of Uncaria tomentosa bark in Hyphessobrycon eques. J Toxicol 2014:ID 412437

    Google Scholar 

  • Agyare C, Spiegler V, Sarkodie H, Asase A, Liebau E, Hensel A (2014) An ethnopharmacological survey and in vitro confirmation of the ethnopharmacological use of medicinal plants as anthelmintic remedies in the Ashanti region, in the central part of Ghana. J Ethnopharmacol 158:255–263

    Article  PubMed  Google Scholar 

  • Akah PA, Offiah VN, Onuogu E (1992) Hepatotoxic effect of Azadirachta indica leaf extracts in rabbits. Fitoterapia 63:311–319

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alavanja MCR (2009) Pesticides use and exposure extensive worldwide. Rev Environ Health 24:303–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernabò I, Brunelli E, Berg C, Bonacci A, Tripepi S (2008) Endosulfan acute toxicity in Bufo bufo gills: ultrastructural changes and nitric oxide synthase localization. Aquat Toxicol 86:447–456

    Article  PubMed  CAS  Google Scholar 

  • Bernabò I, Sperone E, Tripepi S, Brunelli E (2011) Toxicity of chlorpyrifos to larval Rana dalmatina: acute and chronic effects on survival, development, growth and gill apparatus. Arch Environ Contam Toxicol 61:704–718

    Article  PubMed  CAS  Google Scholar 

  • Blaustein AR, Wake DB (1995) The puzzle of declining amphibian populations. Sci Am 272:52–57

    Article  Google Scholar 

  • Bridges CM (2000) Long-term effects of pesticide exposure at various life stages of the Southern leopard frog (Rana sphenocephala). Arch Environ Contam Toxicol 39:91–96

    Article  PubMed  CAS  Google Scholar 

  • Brühl CA, Schmidt T, Pieper S, Alscher A (2013) Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Sci Rep 3:1135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chindah AC, Sikoki FD, Vincent-Akpu I (2004) Toxicity of an organophosphate pesticides (chlorpyrifos) on a common Niger Delta Wetland fish-Tilapia guineensis (Blecker 1862). J Appl Sci Environ Mgt 8:11–17

    CAS  Google Scholar 

  • Crombie L, Games D, Haskins N, Reed G (1972) Extractives of Mammea americana L. Part V. The insecticidal compounds. J Chem Soc Perkin Trans 0:2255–2260

    Article  CAS  Google Scholar 

  • Cruz C, Machado-Neto JG, Menezes ML (2004) Toxicidade aguda do inseticida Paration metílico e do biopesticida azadiractina de folhas de neem (Azadirachta indica) para alevino e juvenile de pacu (Piaractus mesopotamicus). Pesticidas: R Ecotoxicol e Meio Ambiente 14:92–102

    Google Scholar 

  • Das BK, Mukherjee SC (2003) Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical, enzymatic and haematological consequences. Comp Biochem Physiol C: Toxicol Pharmacol 134:109–121

    Google Scholar 

  • Eddleston M, Buckley N, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371:597–607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elteraifi IE, Hassanali A (2011) Oil and Azadirachtin contents of neem (Azadirachta indica A. Juss) seed kernels collected from trees growing in different habitats in Sudan. Int J Biol Chem Sci 5:1063–1072

    Google Scholar 

  • Ezemonye LIN, Ilechie I (2007) Acute and chronic effects of organophosphate pesticides (Basudin) to amphibian tadpoles (Ptychadena bibroni). Afr J Biotechnol 6:1554–1558

    CAS  Google Scholar 

  • Ferrari A, Anguiano OL, Soleño J, Venturino A, de D’ Angelo AMP (2004) Different susceptibility of two aquatic vertebrates (Oncorhynchus mykiss and Bufo arenarum) to azinphos methyl and carbaryl. Comp Biochem Physiol C 139:239–243

    Article  CAS  Google Scholar 

  • Ghimeray AK, Jin CW, Ghimire BK, Cho DH (2009) Antioxidant activity and quantitative estimation of azadirachtin and nimbin in Azadirachta indica A. Juss grown in foothills of Nepal. Afr J Biotechnol 8:3084–3091

    CAS  Google Scholar 

  • Gürkan M, Hayretdağ S (2015) Acute toxicity of maneb in the tadpoles of common and green toad. Arh Hig Rada Toksikol 66:189–195

    Article  PubMed  CAS  Google Scholar 

  • Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol 15:921–933

    Article  Google Scholar 

  • Issakul K, Jatisatienr A, Pawelzik E, Jatisatienr C (2011) Potential of Mammea siamensis as a botanical insecticide: its efficiency on diamondback moth and side effects on non-target organisms. J Med Plant Res 5:2149–2156

    Google Scholar 

  • Jadeja GC, Maheshwari RC, Naik SN (2011) Extraction of natural insecticide azadirachtin from neem (Azadirachta indica A. Juss) seed kernels using pressurized hot solvent. J Supercirt Fluids 56:253–258

    Article  CAS  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100

    Article  PubMed  CAS  Google Scholar 

  • Johansson M, Piha H, Kylin H, Merila J (2006) Toxicity of six pesticides to common frog (Rana temporaria) tadpoles. Environ Toxicol Chem 25:3164–3170

    Article  PubMed  CAS  Google Scholar 

  • Kaltenegger E, Brem B, Mereiter K, Kalchhauser H, Kahlig H, Hofer O, Vajrodaya S, Greger H (2003) Insecticidal pyrido (1,2-a)azepine alkaloids and related derivatives from Stemona species. Phytochemistry 63:803–816

    Article  PubMed  CAS  Google Scholar 

  • Karunamoorthi K, Bishaw D, Mulat T (2009) Toxic effects of traditional Ethiopian fish poisoning plant Milletia ferruginea (Hochst) seed extract on aquatic macroinvertebrates. Eur Rev Med Pharmacol Sci 13:179–185

    PubMed  CAS  Google Scholar 

  • Kasai N, Osanai T, Miyoshi I, Kamimura E, Yoshida MC, Dempo K (1990) Clinico-pathological studies of LEC rats with hereditary hepatitis and hepatoma in the acute phase of hepatitis. Lab Anim Sci 40:502–505

    PubMed  CAS  Google Scholar 

  • Kongkiatpaiboon S, Keeratinijakal V, Gritsanapan W (2013) Simultaneous quantification of stemocurtisine, stemocurtisinol and stemofoline in Stemona curtisii (Stemonaceae) by TLC-densitometric method. J Chromatogr Sci 51:430–435

    Article  PubMed  CAS  Google Scholar 

  • Kumar CSSR, Srinivas M, Yakkundi S (1996) Limonoids from the seeds of Azadirachta indica. Phytochemistry 43:451–455

    Article  CAS  Google Scholar 

  • Kurth T, Weiche S, Vorkel D, Kretschmar S, Menge A (2012) Histology of plastic embedded amphibian embryos and larvae. Genesis 50:235–250

    Article  PubMed  CAS  Google Scholar 

  • Macagnan N, Rutkoski CF, Kolcenti C, Vanzetto GV, Macagnan LP, Sturza PF, Hartmann PA, Hartmann MT (2017) Toxicity of cypermethrin and deltamethrin insecticides on embryos and larvae of Physalaemus gracilis (Anura: Leptodactylidae). Environ Sci Pollut Res 24:20699–20704

    Article  CAS  Google Scholar 

  • Millan DC, Shiogiri NS, Souza NES, Silva HR, Fernandes MN (2013) Ecotoxicity and hematological effects of a natural insecticide based on tobacco (Nicotiana tabacum) extract on Nile tilapia (Oreochromis niloticus). Acta Sci Biol Sci 35:157–162

    Article  Google Scholar 

  • Milsom WK (1993) Afferent inputs regulating ventilation in vertebrates. In: Bicudo JEPW (ed) The vertebrate gas transport cascade. Adaptations and mode of life. CRC Press, USA, pp 94–105

  • Mordue AJ, Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. An Soc Entomol Brasil 29:615–632

    Article  CAS  Google Scholar 

  • Morris M, Pagan C (1953) The isolation of the toxic principle of mammey. J Am Chem Soc 75:1489

    Article  CAS  Google Scholar 

  • Mungkornasawakul P, Pyne SG, Jatisatienr A, Supyen D, Jatisatienr C, Lie W, Ung AT, Skelton BW, White AH (2004) Phytochemical and larvicidal studies on Stemona curtisii: structure of a new pyrido[1,2-a]azepine Stemona alkaloid. J Nat Prod 67:675–677

    Article  PubMed  CAS  Google Scholar 

  • Netting J (2000) Pesicides implicated in declining frog number. Nature 408:760

    Article  PubMed  CAS  Google Scholar 

  • Oluwatoyin AS (2011) Histopathology of Nile tilapia (Oreochromis niloticus) juveniles exposed to aqueous and ethanolic extracts of Ipomoea aquatica leaf. Int J Fish Aquac 3:244–257

    CAS  Google Scholar 

  • Promsiri S, Naksathit A, Kruatrachue M, Thavara U (2006) Evalutions of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci 13:179–188

    Article  Google Scholar 

  • Relyea RA (2005) The lethal impact of roundup on aquatic and terrestrial amphibians. Ecol Appl 15:1118–1124

    Article  Google Scholar 

  • Rohr JR, Elskus AA, Shepherd BS, Crowley PH, McCarthy TM, Niedzwiecki JH, Sager T, Sih A, Palmer BD (2003) Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander (Ambystoma barbouri). Environ Toxicol Chem 22:2385–2392

    Article  PubMed  CAS  Google Scholar 

  • Rungrojsakul M, Katekunlaphan T, Saiai A, Ampasavate C, Okonogi S, Sweeney CA, Anuchapreeda S (2016) Down-regulatory mechanism of mammea E/BB from Mammea siamensis seed extract on Wilms’ tumor 1 expression in K562 cells. BMC Complement Altern Med 16:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakakibaru I, Terabayashi S, Jubo M, Hiquchi M, Komatsu Y, Okada M, Taki K, Kamei J (1999) Effect on locomotion of indole alkaloids from the hooks of Uncaria plants. Phytomed 6:163–168

    Article  Google Scholar 

  • Schmutterer H (1990) Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu Rev Entomol 35:271–297

    Article  PubMed  CAS  Google Scholar 

  • Sharma J, Gairola S, Sharma YP, Gaur RD (2014) Ethnomedicinal plants used to treat skin diseases by Tharu community of district Udham Singh Nagar, Uttarakhand, India. J Ethnopharmacol 158:140–206

    Article  PubMed  Google Scholar 

  • Shenoy K, Cunningham BT, Renfroe JW, Crowley PH (2009) Growth and survival of northern leopard frog (Rana pipiens) tadpoles exposed to two common pesticides. Environ Toxicol Chem 28:1467–1474

    Article  Google Scholar 

  • Shivanandappa T, Rajashekar Y (2014) Mode of action of plant-derived natural insecticides. In: Singh D (ed) Advances in plant biopesticides. Springer, New Delhi

  • Siddiqui BS, Rasheed M, Ilyas F, Gulzar T, Tariq RM, Nagvi SN (2004) Analysis of insecticidal Azadirachta indica A. Juss. fractions. Z Naturforsch C 59:104–112

    Article  PubMed  CAS  Google Scholar 

  • Siegwart M, Graillot B, Lopez CB, Besse S, Bardin M, Nicot PC, Lopez-Ferber M (2015) Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci 6:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Sparling DW, Fellers GM, McConnell LL (2001) Pesticides and amphibian population declines in California, USA. Environ Toxicol Chem 20:1591–1595

    Article  PubMed  CAS  Google Scholar 

  • Thapa BR, Walia A (2007) Liver function tests and their interpretation. Indian J Pediatr 74:663–671

    Article  PubMed  CAS  Google Scholar 

  • Vasanth S, Gopal RH, Rao RH, Rao RB (1990) Plant antimalarial agents. Ind. J Sci Res 49:68–77

    CAS  Google Scholar 

  • Wake DB (1991) Declining amphibian population. Sci 253:860

    Article  CAS  Google Scholar 

  • Wattanasirmkit K, Singh-asa P, Fagtongpan P (2003) Subchronic effect of Thai neem Azadirachta indica var. siamensis seed extract on liver and blood of Tiger frog Hoplobatrachus rugulosus Weighman. Proceeding of the 8th Biological Science Graduate Congress, National University of Singapore, p 53

  • Weber CI (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organism. US Environmental Protection Agency Office of Water, Washington, DC

  • Wolansky MJ, Harrill JA (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals: a critical review. Neurotoxicol Teratol 30:55–78

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Wages MR, Cai Q, Maul JD, Cobb GP (2013) Lethal and sublethal effects of three insecticides on two developmental stages of Xenopus laevis and comparison with other amphibians. Environ Toxicol Chem 32:2056–2064

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Product Research Unit, Department of Biology, Faculty of Science, Chiang Mai University, for providing the bioinsecticide.

Funding

This research was supported by Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wararut Buncharoen.

Ethics declarations

This study was funded by Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Faculty of Science, Chiang Mai University.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures encompassing the animals were conducted with strict adherence to guidelines and procedures reviewed and approved by the Institutional Animal Care and Use Committee of the Biology Department, Faculty of Science, Chiang Mai University, permission number Re. 005/07.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saenphet, K., Saenphet, S., Intamong, J. et al. Acute toxicity and histopathological changes in livers of frog tadpoles (Hoplobatrachus rugulosus) exposed to bioinsecticides derived from Azadirachta indica A. Juss., Stemona curtisii Hook.F., and Mammea siamensis. Comp Clin Pathol 27, 939–946 (2018). https://doi.org/10.1007/s00580-018-2685-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-018-2685-6

Keywords

Navigation