Skip to main content
Log in

Sorghum stem extract modulates Na+/K+-ATPase, ecto-5′-nucleotidase, and acetylcholinesterase activities

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Sorghum stem (Sorghum bicolor) has been in use in traditional medicine systems for the management of neurodegenerative conditions. However, there is dearth of information on the scientific basis for its use in the treatment of such conditions. This study sought to assess the antioxidant activity and effects of phenolic extract from sorghum stem (Sorghum bicolor) on some cholinergic (acetylcholinesterase (AChE)) and purinergic (Na+/K+-ATPase and ecto-5′-nucleotidase) enzymes associated with neurological conditions. Phenolic-rich extract was prepared using methanol: 1 N HCl (1:1, v/v) mixture and characterized using high-performance liquid chromatography-diode array detector (HPLC-DAD). In vitro tests were used to investigate the effects of the phenolic extract on AChE, Na+/K+-ATPase, and ecto-5′-nucleotidase activities. Furthermore, the hydroxyl (OH) radical scavenging and Fe2+-chelating abilities of the extract were investigated. HPLC-DAD analysis revealed the presence of some phenolic acids such as caffeic acid (120.58 mg/g), ferulic acid (76.45 mg/g), gallic acid (17.48 mg/g), chlorogenic acid (16.25 mg/g), and flavonoids such as kaempferol (15.98 mg/g), rutin (51.07 mg/g), quercetin (263.16 mg/g), and quercitrin (89.21 mg/g) in the phenolic extract. The extract significantly inhibited AChE and ecto-5′-nucleotidase activities in a dose dependent manner with IC50 = 24.88 μg/ml and IC50 = 37.49 μg/ml, respectively, and increased Na+/K+-ATPase activity in a dose dependent manner. Furthermore, the phenolic extract also scavenged OH radicals and was able to chelate Fe2+ in a dose dependent manner with IC50 = 54.27 μg/ml and 18.47 μg/ml, respectively. This study revealed the antioxidant and modulatory effects of phenolic extracts from sorghum stem on some cholinergic and purinergic enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas SR, Sabir SM, Ahmad SD, Boligon AA, Athayde ML (2014) Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem 147:10–16

    Article  CAS  PubMed  Google Scholar 

  • Ademosun AO, Oboh G (2012) Inhibition of acetylcholinesterase activity and Fe2+-induced lipid peroxidation in rat brain in vitro by some citrus fruit juices. J Med Food 15(5):428–434

    Article  CAS  PubMed  Google Scholar 

  • Ademosun AO, Oboh G (2014) Comparison of the inhibition of monoamine oxidase and butyrylcholinesterase activities by infusions from green tea and some citrus peels. I J Alz Dis, http://dx.doi.org/10.1155/2014/586407

  • Arnaiz GR, Ordieres MGL (2014) Brain Na+, K+-ATPase activity in aging and disease. Int J Biomed Sci 10(2):85–102

    Google Scholar 

  • Bakasso S, Lamien-meda A, Lamien CE, Kiendrebeogo M, Coulibaly AY, Compaoré M, Meda NR, Nacoulma OG (2013) In vitro inhibition of acetyl cholinesterase, lipoxygenase, xanthine oxidase and antibacterial activities of five Indigofera (Fabaceae) aqueous acetone extracts from Burkina Faso. Current Research J Biol Sci 5(3):115–122

    Google Scholar 

  • Boligon AA, Kubiça TF, Mario DN, Brum TF, Piana M, Weiblen R, Lovato L, Alves SH, Santos RCV, Alves CFS, Athayde ML (2013) Antimicrobial and antiviral activity-guided fractionation from Scutia buxifolia Reissek extracts. Acta Physiol Plant 35:2229–2239

    Article  Google Scholar 

  • Boligon AA, Pimentel CA, Bagatini MD, Athayde ML (2015) Effect of Scutia buxifolia Reissek in nucleotidase activities and inhibition of platelet aggregation. J Nat Med 69(1):46–54

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Disc 7:575–590

    Article  CAS  Google Scholar 

  • Di Iorio P, Ballerini P, Caciagli F, Ciccarelli R (1998) Purinoceptor mediated modulation of purine and neurotransmitter release from nervous tissue. Pharmacol Res 37(3):169–78

    Article  PubMed  Google Scholar 

  • Ferrerira A, Proenc C, Serralheiro MLM, Arajo MEM (2006) The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 108:31–37

    Article  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • de Giana P, Cognato G, Bonan CD (2010) Ectonucleotidases and epilepsy. Open Neurosci J 4:44–52

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1981) The deoxyribose method: simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Ann Rev Biochem 165:215–219

    Article  Google Scholar 

  • Hasnat MA, Pervin M, Lim BO (2013) Acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum Grown on germinated brown rice. Mol 18:6663–6678

    Article  Google Scholar 

  • Heymann D, Reddington M, Kreutzberg GW (1984) Subcellular localization of 5’-nucleotidase in rat brain. J Neurochem 43:971–978

    Article  CAS  PubMed  Google Scholar 

  • Howes MJ, Houghton PJ (2003) Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav 75:513–527

    Article  CAS  PubMed  Google Scholar 

  • Ilori OO, Odukoya OA (2005) Hibiscus sabdarifa and Sorghum bicolor as natural colorants. J Environ Agric Food Chem 4:858–62

    Google Scholar 

  • Javorková V, Pechánová O, Andriantsitohaina R, Vrbjar N (2003) Effect of polyphenolic compounds on the renal Na+, K + -ATPase during the restoration of normotension after experimentally induced hypertension in rats. Exp Physiol 88(4):475–482

    Article  PubMed  Google Scholar 

  • Jung M, Park M (2007) Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules 12:2130–2139

    Article  CAS  PubMed  Google Scholar 

  • Kinsella K, Wan H (2009) “An ageing world”. US Census Bureau, international population reports P 95/09-1. US Government Printing Office, Washington

    Google Scholar 

  • Kitakaze M, Minamino T, Node K, Komamura K, Inoue M, Hori M, Kamade T (1996) Activation of ecto-5-nucleotidase by protein kinase C attenuates irreversible cellular injury due to hypoxia and reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol 28:1945–1955

    Article  CAS  PubMed  Google Scholar 

  • Lees GJ (1991) Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Rev 16:283–300

    Article  CAS  PubMed  Google Scholar 

  • Maneva A, Taleva B (2008) Effect of some flavonic compounds and ascorbic acid on lactoferrin stimulation of erythrocyte glycolysis and Na+/K+-atpase activity. Zeitchrift Naturforschung C 63:773–779

    CAS  Google Scholar 

  • Marksberry WR, Lovell MA (2007) Damage to lipids, proteins, DNA and RNA in mild cognitive impairment. Arch Neurol 64:954–956

    Article  Google Scholar 

  • Minamino T, Kitakaze M, Morioka T, Node K, Komamura K, Takeda H, Inoue M, Hori M, Kamada T (1996) Cardioprotection due to preconditioning correlates with increased ecto-5-nucleotidase activity. Am J Physiol 270:238–244

    Google Scholar 

  • Minotti G, Aust S (1987) An investigation into the mechanism of citrate-Fe2+ dependent lipid peroxidation. Free Rad Biol Med 3:379–387

    Article  CAS  PubMed  Google Scholar 

  • Mishra N, Rizvi SI (2012) Quercetin modulates Na+/K+ ATPase and sodium hydrogen exchanger in type 2 diabetic erythrocytes. Cell Mol Biol 58(1):148–152

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14(4):289–300

    Article  CAS  PubMed  Google Scholar 

  • Mutegi E, Sagnard F, Muraya M, Kanyenji B, Rono B, Mwongera C (2010) Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow. Genet Resour Crop Evol 57:243–53

    Article  Google Scholar 

  • Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA (2013) Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem Res 38:413–419

    Article  CAS  PubMed  Google Scholar 

  • Ohno K, Engel AG, Brengman JM, Shen XM, Heidenreich F, Vincent A, Milone M, Tan E, Demirci M, Walsh P, Nakano S, Akiguchi I (2000) The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann Neurol 47:162–170

    Article  CAS  PubMed  Google Scholar 

  • Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22(6):273–280

    Article  CAS  PubMed  Google Scholar 

  • Perry NS, Houghton PJ, Theobald A, Jenner P, Perry EK (2000) In-vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia essential oil and constituent terpenes. J Pharm Pharmacol 52(7):895–902

    Article  CAS  PubMed  Google Scholar 

  • Pohanka M (2014) Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int J Mol Sci 15:9809–9825

    Article  PubMed  PubMed Central  Google Scholar 

  • Polinsky RJ, Holmes KV, Brown RT, Weise V (1989) CSF acetylcholinesterase levels are reduced in multiple system atrophy with autonomic failure. Neurol 39:40–44

    Article  CAS  Google Scholar 

  • Pratico D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 109:577–585

    Article  CAS  PubMed  Google Scholar 

  • Puntel RL, Nogueira CW, Rocha JBT (2005) Krebs cycle intermediates modulate thiobarbituric reactive species (TBARS) production in rat brain in vitro. Neurochem Res 30:225–235

    Article  CAS  PubMed  Google Scholar 

  • Ribeiroa CAJ, Hickmann FH, Wajner M (2011) Neurochemical evidence that 3-methylglutaric acid inhibits synaptic Na+, K+-ATPase activity probably through oxidative damage in brain cortex of young rats. Int J Devl Neuroscience 29:1–7

    Article  Google Scholar 

  • Robson S, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306

    Article  CAS  PubMed  Google Scholar 

  • Scheiner-Bobis G (2002) The sodium pump. Its molecular properties and mechanics of ion transport. Eur J Biochem 269:2424–2433

    Article  CAS  PubMed  Google Scholar 

  • Slemmer JE, Shacka JJ, Sweeney MI, Weber JT (2008) Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 15:404–414

    Article  CAS  PubMed  Google Scholar 

  • Taylor JRN, Belton PS, Beta T, Duodu KG (2014) Increasing the utilisation of sorghum, millets and pseudocereals: developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J Cereal Sci 59:257–275

    Article  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Mark TD, Mansur CM, Tesler J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Volonté C, Amadio S, Cavaliere F, D’Ambrosi N, Vacca F, Bernardi G (2003) Extracellular ATP and neurodegeneration. Curr Drug Targets CNS Neurol Disord 2:403–412

    Article  PubMed  Google Scholar 

  • Wyse AT, Bavaresco CS, Reis EA, Zugno AI, Tagliari B, Calcagnotto T, Netto CA (2004) Training in inhibitory avoidance causes a reduction of Na+, K+-ATPase activity in rat hippocampus. Physiol Behav 80(4):475–479

    Article  CAS  PubMed  Google Scholar 

  • Wyse AT, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+/K+-ATPase activity after brain ischemia. Neurochem Res 25:969–973

    Google Scholar 

  • Zago MP, Verstraeten SV, Oteiza PI (2000) Zinc in the prevention of Fe2+ initiated lipid and protein oxidation. Biol Res 33:143–150

    Article  CAS  PubMed  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Inc, USA, p 620

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganiyu Oboh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oboh, G., Adewuni, T.M., Ademosun, A.O. et al. Sorghum stem extract modulates Na+/K+-ATPase, ecto-5′-nucleotidase, and acetylcholinesterase activities. Comp Clin Pathol 25, 749–756 (2016). https://doi.org/10.1007/s00580-016-2259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-016-2259-4

Keywords

Navigation