Skip to main content

Advertisement

Log in

Role of renal urothelium in the development and progression of kidney disease

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The clinical and financial impact of chronic kidney disease (CKD) is significant, while its progression and prognosis is variable and often poor. Studies using the megabladder (mgb −/−) model of CKD show that renal urothelium plays a key role in modulating early injury responses following the development of congenital obstruction. The aim of this review is to examine the role that urothelium has in normal urinary tract development and pathogenesis. We discuss normal morphology of renal urothelium and then examine the role that uroplakins (Upks) play in its development. Histologic, biochemical, and molecular characterization of Upk1b RFP/RFP mice indicated Upk1b expression is essential for normal urinary tract development, apical plaque/asymmetric membrane unit (AUM) formation, and differentiation and functional integrity of the renal urothelium. Our studies provide the first evidence that Upk1b is directly associated with the development of congenital anomalies of the urinary tract (CAKUT), spontaneous age-dependent hydronephrosis, and dysplastic urothelia. These observations demonstrate the importance of proper urothelial differentiation in normal development and pathogenesis of the urinary tract and provide a unique working model to test the hypothesis that the complex etiology associated with CKD is dependent upon predetermined genetic susceptibilities that establish pathogenic thresholds for disease initiation and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. (2012) U.S. Renal data system, USRDS 2012 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. National institutes of health, national institute of diabetes and digestive and kidney diseases, Bethesda, MD, 2012

  2. (2007) U.S. Renal data system, USRDS 2007 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. National institutes of health, national institute of diabetes and digestive and kidney diseases, Bethesda, MD

  3. Wong CJ, Moxey-Mims M, Jerry-Fluker J, Warady BA, Furth SL (2012) CKiD (CKD in children) prospective cohort study: a review of current findings. Am J Kidney Dis 60:1002–1011

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roth KS, Carter WH Jr, Chan JC (2001) Obstructive nephropathy in children: long-term progression after relief of posterior urethral valve. Pediatrics 107:1004–1010

    Article  CAS  PubMed  Google Scholar 

  5. Ingraham SE, Saha M, Carpenter AR, Robinson M, Ismail I, Singh S, Hains D, Robinson ML, Hirselj DA, Koff SA, Bates CM, McHugh KM (2010) Pathogenesis of renal injury in the megabladder mouse: a genetic model of congenital obstructive nephropathy. Pediatr Res 68:500–507

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh S, Robinson M, Nahi F, Coley B, Robinson ML, Bates CM, Kornacker K, McHugh KM (2007) Identification of a unique transgenic mouse line that develops megabladder, obstructive uropathy, and renal dysfunction. J Am Soc Nephrol 18:461–471

    Article  CAS  PubMed  Google Scholar 

  7. Aboushwareb T, Zhou G, Deng FM, Turner C, Andersson KE, Tar M, Zhao W, Melman A, D’Agostino R Jr, Sun TT, Christ GJ (2009) Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice. Neurourol Urodyn 28:1028–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP (2001) Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103

    CAS  PubMed  Google Scholar 

  9. Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, Sun TT (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151:961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT (2004) Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol 167:1195–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Romih R, Korosec P, De Mello W Jr, Jezernik K (2005) Differentiation of epithelial cells in the urinary tract. Cell Tissue Res 320:259–268

    Article  PubMed  Google Scholar 

  12. Carpenter AR, Becknell B, Ching CB, Cuaresma EJ, Chen X, Hains DS, McHugh KM (2016) Uroplakin 1b is critical in urinary tract development and urothelial differentiation and homeostasis. Kidney Int 89:612–624

    Article  CAS  PubMed  Google Scholar 

  13. Wu XR, Lin JH, Walz T, Haner M, Yu J, Aebi U, Sun TT (1994) Mammalian uroplakins. A group of highly conserved urothelial differentiation-related membrane proteins. J Biol Chem 269:13716–13724

    CAS  PubMed  Google Scholar 

  14. Garcia-Espana A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, Desalle R (2006) Origin of the tetraspanin uroplakins and their co- evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol 41:355–367

    Article  CAS  PubMed  Google Scholar 

  15. Deng FM, Liang FX, Tu L, Resing KA, Hu P, Supino M, Hu CC, Zhou G, Ding M, Kreibich G, Sun TT (2002) Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. J Cell Biol 159:685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu J, Lin JH, Wu XR, Sun TT (1994) Uroplakins Ia and Ib, two major differentiation products of bladder epithelium, belong to a family of four transmembrane domain (4TM) proteins. J Cell Biol 125:171–182

    Article  CAS  PubMed  Google Scholar 

  17. Wu XR, Medina JJ, Sun TT (1995) Selective interactions of UPIa and UPIb, two members of the transmembrane 4 superfamily, with distinct single transmembrane-domained proteins in differentiated urothelial cells. J Biol Chem 270:29752–29759

    Article  CAS  PubMed  Google Scholar 

  18. Liang FX, Riedel I, Deng FM, Zhou G, Xu C, Wu XR, Kong XP, Moll R, Sun TT (2001) Organization of uroplakin subunits: transmembrane topology, pair formation and plaque composition. Biochem J 355:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu CC, Liang FX, Zhou G, Tu L, Tang CH, Zhou J, Kreibich G, Sun TT (2005) Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking. Mol Biol Cell 16:3937–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Min G, Stolz M, Zhou G, Liang F, Sebbel P, Stoffler D, Glockshuber R, Sun TT, Aebi U, Kong XP (2002) Localization of uroplakin Ia, the urothelial receptor for bacterial adhesin FimH, on the six inner domains of the 16 nm urothelial plaque particle. J Mol Biol 317:697–706

    Article  CAS  PubMed  Google Scholar 

  21. Sakakibara K, Sato K, Yoshino K, Oshiro N, Hirahara S, Mahbub Hasan AK, Iwasaki T, Ueda Y, Iwao Y, Yonezawa K, Fukami Y (2005) Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J Biol Chem 280:15029–15037

    Article  CAS  PubMed  Google Scholar 

  22. Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, Gullett AM, Thomas DF, Belk RA, Feather SA, Sun TT, Woolf AS (2005) De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol 16:2141–2149

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Min G, Glockshuber R, Sun TT, Kong XP (2009) Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 392:352–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thumbikat P, Berry RE, Zhou G, Billips BK, Yaggie RE, Zaichuk T, Sun TT, Schaeffer AJ, Klumpp DJ (2009) Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5:e1000415

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tu L, Kong XP, Sun TT, Kreibich G (2006) Integrity of all four transmembrane domains of the tetraspanin uroplakin Ib is required for its exit from the ER. J Cell Sci 119:5077–5086

    Article  CAS  PubMed  Google Scholar 

  26. Becknell B, Carpenter AR, Allen JL, Wilhide ME, Ingraham SE, Hains DS, McHugh KM (2013) Molecular basis of renal adaptation in a murine model of congenital obstructive nephropathy. PLoS One 8:e72762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vinsonneau C, Girshovich A, M’Rad MB, Perez J, Mesnard L, Vandermersch S, Placier S, Letavernier E, Baud L, Haymann JP (2010) Intrarenal urothelium proliferation: an unexpected early event following ischemic injury. Am J Physiol Renal Pysiol 299:F479–F486

    Article  CAS  Google Scholar 

  28. Girshovich A, Vinsonneau C, Perez J, Vandermeersch S, Verpont MC, Placier S, Jouanneau C, Letavernier E, Baud L, Haymann JP (2012) Ureteral obstruction promotes proliferation and differentiation of the renal urothelium into a bladder-like phenotype. Kidney Int 82:428–435

    Article  CAS  PubMed  Google Scholar 

  29. Wood MW, Breitschwerdt EB, Nordone SK, Linder KE, Gookin JL (2012) Uropathogenic E. coli promote a paracellular urothelial barrier defect characterized by altered tight junction integrity, epithelial cell sloughing and cytokine release. J Comp Pathol 147:11–19

    Article  CAS  PubMed  Google Scholar 

  30. Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472:110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McHugh KM (2014) Megabladder mouse model of congenital obstructive nephropathy: genetic etiology and renal adaptation. Pediatr Nephrol 29:645–650

    Article  PubMed  Google Scholar 

  32. Becknell B, Mohamed AZ, Li B, Wilhide ME, Ingraham SE (2015) Urine stasis predisposes to urinary tract infection by an opportunistic uropathogen in the megabladder (Mgb) mouse. PLoS One 10:e0139077

    Article  PubMed  PubMed Central  Google Scholar 

  33. McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, Grimmond S, Lessard JL, Little MH, Potter SS, Wilder EL, Zhang P, project G (2008) GUDMAP: the genitourinary developmental molecular anatomy project. J Am Soc Nephrol 19:667–671

    Article  PubMed  Google Scholar 

  34. Mauney JR, Ramachandran A, Yu RN, Daley GQ, Adam RM, Estrada CR (2010) All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PLoS One 5:e11513

    Article  PubMed  PubMed Central  Google Scholar 

  35. Adachi W, Okubo K, Kinoshita S (2000) Human uroplakin Ib in ocular surface epithelium. Invest Ophthalmol Vis Sci 41:2900–2905

    CAS  PubMed  Google Scholar 

  36. Harding SD, Armit C, Armstrong J, Brennan J, Cheng Y, Haggarty B, Houghton D, Lloyd-MacGilp S, Pi X, Roochun Y, Sharghi M, Tindal C, McMahon AP, Gottesman B, Little MH, Georgas K, Aronow BJ, Potter SS, Brunskill EW, Southard-Smith EM, Mendelsohn C, Baldock RA, Davies JA, Davidson D (2011) The GUDMAP database--an online resource for genitourinary research. Development 138:2845–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith CM, Finger JH, Hayamizu TF, McCright IJ, Xu J, Berghout J, Campbell J, Corbani LE, Forthofer KL, Frost PJ, Miers D, Shaw DR, Stone KR, Eppig JT, Kadin JA, Richardson JE, Ringwald M (2014) The mouse gene expression database (GXD): 2014 update. Nucleic Acids Res 42:D818–D824

    Article  CAS  PubMed  Google Scholar 

  38. Thumbikat P, Berry RE, Schaeffer AJ, Klumpp DJ (2009) Differentiation- induced uroplakin III expression promotes urothelial cell death in response to uropathogenic E. coli. Microbes Infect 11:57–65

    Article  CAS  PubMed  Google Scholar 

  39. Ogawa K, Johansson SL, Cohen SM (1999) Immunohistochemical analysis of uroplakins, urothelial specific proteins, in ovarian Brenner tumors, normal tissues, and benign and neoplastic lesions of the female genital tract. Am J Pathol 155:1047–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng L, Cheville JC, Neumann RM, Bostwick DG (1999) Natural history of urothelial dysplasia of the bladder. Am J Surg Pathol 23:443–447

    Article  CAS  PubMed  Google Scholar 

  41. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  42. Raman JD, Ng CK, Boorjian SA, Vaughan ED Jr, Sosa RE, Scherr DS (2005) Bladder cancer after managing upper urinary tract transitional cell carcinoma: predictive factors and pathology. BJU Int 96:1031–1035

    Article  PubMed  Google Scholar 

  43. Chow WH, Lindblad P, Gridley G, Nyren O, McLaughlin JK, Linet MS, Pennello GA, Adami HO, Fraumeni JF Jr (1997) Risk of urinary tract cancers following kidney or ureter stones. J Natl Cancer Inst 89:1453–1457

    Article  CAS  PubMed  Google Scholar 

  44. Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, Chen JT, Cope E, Gipson D, He K, Herman W, Heung M, Hirth RA, Jacobsen SS, Kalantar-Zadeh K, Kovesdy CP, Leichtman AB, Lu Y, Molnar MZ, Morgenstern H, Nallamothu B, O’Hare AM, Pisoni R, Plattner B, Port FK, Rao P, Rhee CM, Schaubel DE, Selewski DT, Shahinian V, Sim JJ, Song P, Streja E, Kurella Tamura M, Tentori F, Eggers PW, Agodoa LY, Abbott KC (2015) US renal data system 2014 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 65:A7

    Article  Google Scholar 

Download references

Acknowledgments

This article used data from the GenitoUrinary Development Molecular Anatomy Project (GUDMAP) database http://www.gudmap.org [12/2015], including microarray (Capel, Gaido, Lessard, Potter & Southard-Smith Laboratories) data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk M. McHugh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpenter, A.R., McHugh, K.M. Role of renal urothelium in the development and progression of kidney disease. Pediatr Nephrol 32, 557–564 (2017). https://doi.org/10.1007/s00467-016-3385-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3385-6

Keywords

Navigation