Skip to main content

Advertisement

Log in

Glutathione depletion and increased apoptosis rate in human cystinotic proximal tubular cells

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

We have determined levels of glutathione (GSH), ATP, mitochondrial complex activity and apoptosis rate in proximal tubular cells (PTCs) exfoliated from urine in cystinotic (n=9) and control (n=9) children. Intracellular GSH was significantly depleted in cystinotic PTCs compared with controls (6.8 nmol GSH/mg protein vs 11.8 nmol GSH/mg protein; P<0.001), but there were no significant differences in mitochondrial complex activities or ATP levels under basal conditions. Cystinotic PTCs showed significantly increased apoptosis rate. After PTCs had been stressed by hypoxia, there was further depletion of GSH in cystinotic and control PTCs (2.4 nmol GSH/mg protein vs 7.2 nmol GSH/mg protein; P<0.001). Hypoxic stress led to increased complex I and complex IV activities in control but not in cystinotic PTCs. ATP levels were significantly reduced in cystinotic PTCs after hypoxic stress (12.2 nmol/mg protein vs 26.9 nmol/mg protein; P<0.001). GSH depletion occurs in this in vitro model of cystinotic PTCs, is exaggerated by hypoxic stress and may contribute to reduced ATP and failure to increase complex I/IV activities. Apoptotic rate is also increased, and these mechanisms may contribute to cellular dysfunction in cultured, human cystinotic PTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gahl WA, Thoene JG, Schneider JA (2001) Cystinosis: a disorder of lysosomal membrane transport. In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) The metabolic and molecular basis of inherited disease, vol III, 8th edn, McGraw-Hill, New York, pp 5085–5108

    Google Scholar 

  2. Pisoni RL, Thoene JG, Christensen HN (1985) Detection and characterization of carrier-mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. J Biol Chem 260:4791–4798

    PubMed  CAS  Google Scholar 

  3. van’t Hoff WG, Gretz N (1995) The treatment of cystinosis with cysteamine and phosphocysteamine in the United Kingdom and Eire. Pediatr Nephrol 9:685–689

    Article  PubMed  Google Scholar 

  4. Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP, van’t Hoff W, Antignac A (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18:319–324

    Article  PubMed  CAS  Google Scholar 

  5. Attard M, Jean G, Forestier L, Cherqui S, van’t Hoff W, Broyer M, Antignac C, Town M (1999) Severity of phenotype in cystinosis varies with mutations in the CTNS gene: predicted effect on the model of cystinosin. Hum Mol Genet 8:2507–2514

    Article  PubMed  CAS  Google Scholar 

  6. Haq MR, Kalatzis V, Gubler MC, Town MM, Antigniac C, van’t Hoff WG, Woolf AS (2002) Immunolocalization of cystinosin, the protein defective in cystinosis. J Am Soc Nephrol 13:2046–2051

    Article  PubMed  CAS  Google Scholar 

  7. Kalatzis V, Cherqui S, Antignac C, Gasnier B (2001) Cystinosin, the protein defective in cystinosis, is a H+-driven lysosomal cystine transporter. EMBO J 21:5940–5949

    Article  Google Scholar 

  8. Coor C, Salmon RF, Quigley R, Marver D, Baum M (1991) Role of adenosine triphosphate (ATP) and NaK ATPase in the inhibition of proximal tubule transport with intracellular cystine loading. J Clin Invest 87:955–961

    Article  PubMed  CAS  Google Scholar 

  9. Sakarcan A, Aricheta R, Baum M (1992) Intracellular cystine loading causes proximal tubule respiratory dysfunction: effect of glycine. Pediatr Res 32:710–713

    Article  PubMed  CAS  Google Scholar 

  10. Foreman JW, Benson LL, Wellons M, Avner ED, Sweeney W, Nissim I, Nissim I (1995) Metabolic studies of rat renal tubule cells loaded with cystine: The cystine dimethylester model of cystinosis. J Am Soc Nephrol 6:269–272

    Article  PubMed  CAS  Google Scholar 

  11. Niaudet P (1998) Mitochondrial disorders and the kidney. Arch Dis Child 78:387–390

    PubMed  CAS  Google Scholar 

  12. Roth KS, Carter BE, Higgins ES (1991) Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental Fanconi syndrome. Proc Soc Exp Biol Med 196:428–431

    PubMed  CAS  Google Scholar 

  13. Cetinkaya I, Schlatter E, Hirsch JR, Herter P, Harms E, Kleta R (2002) Inhibition of Na+-dependent transporters in cystine-loaded human renal cells: electrophysiological studies on the Fanconi syndrome of cystinosis. J Am Soc Nephrol 13:2085–2093

    Article  PubMed  CAS  Google Scholar 

  14. Park MA, Thoene JG (2005) Potential role of apoptosis in development of the cystinotic phenotype. Pediatr Nephrol 20:441–446

    Article  PubMed  Google Scholar 

  15. Santangelo F, Witko-Sarsat V, Drüke T, Descamps-Latscha B (2004) Restoring glutathione as a therapeutic strategy in chronic kidney disease. Nephrol Dial Transplant 19:1951–1955

    Article  PubMed  CAS  Google Scholar 

  16. Heales SJ, Davies SE, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20:31–38

    Article  PubMed  CAS  Google Scholar 

  17. Laube GF, Haq MR, van’t Hoff WG (2005) Exfoliated human proximal tubular cells: a model of cystinosis and other Fanconi syndrome. Pediatr Nephrol 20:136–140

    Article  PubMed  Google Scholar 

  18. Oshima RG, Willis RC, Furlong CE, Schneider JA (1974) Binding assays for amino acids. The utilization of a cystine binding protein from Escherichia coli for the determination of acid-soluble cystine in small physiological samples. J Biol Chem 249:6033–6039

    PubMed  CAS  Google Scholar 

  19. Loughna S, Yuan HT, Woolf AS (1998) Effects of oxygen on vascular patterning in Tiel/LacZ metanephric kidneys in vitro. Biochem Biophys Res Commun 247:361–366

    Article  PubMed  CAS  Google Scholar 

  20. Smolenski RT, Lachno DR, Ledingham SJM, Yacoub MH (1990) Determination of sixteen nucleotides, nucleosides and bases using high-performance liquid chromatography and its application to the study of purine metabolism in hearts for transplantation. J Chromatogr 527:414–420

    Article  PubMed  CAS  Google Scholar 

  21. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  22. Gegg M (2002) The role of cellular glutathione concentration in dictating astrocytic and neuronal susceptibility to oxidative stress. PhD thesis, University of London

  23. Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN (1987) Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. In: Darley-Usmar VM, Rickwood D, Wilson MT (eds) Mitochondria, a practical approach. IRL Press, pp 79–112

  24. King TE (1967) Preparation of succinate cytochrome c reductase and the cytochrome b-c1 particle, and reconstitution of succinate cytochrome c reductase. Methods Enzymol 10:216–225

    CAS  Google Scholar 

  25. Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250

    Article  CAS  Google Scholar 

  26. Shepherd JA, Garland PB (1969) Citrate synthase from rat liver. Methods Enzymol 13:11–19

    CAS  Google Scholar 

  27. Bergeron M, Gougoux A, Noel J, Parent L (2001) The renal Fanconi syndrome (chapter 196). In: Scriver CR, Beaudet AL, Valle D, Sly WS (eds) The metabolic and molecular basis of inherited disease, vol III, 8th edn, McGraw-Hill, New York, pp 5023–5138

    Google Scholar 

  28. Norden AG, Lapsley M, Igarashi T, Kelleher CL, Lee PJ, Matsuyama T, Scheinman SJ, Shiraga H, Sundin DP, Thakker RV, Unwin RJ, Verroust P, Moestrup SK (2002) Urinary megalin deficiency implicates abnormal tubular endocytic function in Fanconi syndrome. J Am Soc Nephrol 13:125–130

    Article  PubMed  CAS  Google Scholar 

  29. Cherqui S, Sevin C, Hamard G, Kalatzis V, Sich M, Pequignot MO, Gogat K, Abitbol M, Broyer M, Gubler M-C, Antignac C (2002) Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis. Mol Cell Biol 22:7622–7632

    Article  PubMed  CAS  Google Scholar 

  30. Chol M, Nevo N, Cherqui S, Antignac C, Rustin P (2004) Glutathione precursors replenish decreased glutathione pool in cystinotic cell lines. Biochem Biophys Res Commun 5:231–235

    Article  CAS  Google Scholar 

  31. Butler JD, Key JD, Hughes BF, Tietze F, Raiford DS, Reed GF, Brannon PM, Spielberg SP, Schulman JD (1987) Glutathione metabolism in normal and cystinotic fibroblasts. Exp Cell Res 172:158–167

    Article  PubMed  CAS  Google Scholar 

  32. Emma F, Mannucci L, Pastore A, Rizzoni G (2004). Decreased activity of the γ-glutamyl cycle in nephropathic cystinosis. Pediatr Nephrol 19:C177

    Google Scholar 

  33. Hargreaves P, Rahman S, Guthrie P, Taanman JW, Leonard JV, Land JM, Heales SJ (2002) Diagnostic value of succinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion. J Inherit Metab Dis 25:7–16

    Article  PubMed  CAS  Google Scholar 

  34. Rizzo C, Ribes A, Pastore A, Dionisi-Vici C, Greco M, Rizzoni G, Federici G (1999) Pyroglutamic aciduria and nephropathic cystinosis. J Inherit Dis 22:224–226

    Article  CAS  Google Scholar 

  35. Schneider JA, Bradley K, Seegmiller JE (1967) Increased cystine in leukocytes from individuals homozygous and heterozygous for cystinosis. Science 157:1321–1322

    Article  PubMed  CAS  Google Scholar 

  36. Stefanovic V (1998) Balkan endemic nephropathy: a need for novel aetiological approaches. Q J Med 91:457–463

    CAS  Google Scholar 

  37. Rossi R, Kleta R, Ehrich JH (1999) Renal involvement in children with malignancies. Pediatr Nephrol 13:153–162

    Article  PubMed  CAS  Google Scholar 

  38. Sener G, Sehirli O, Yegen BC, Cetinel S, Gedik N, Sakarcan A (2004) Melatonin attenuates ifosfamide-induced Fanconi syndrome in rats. J Pineal Res 37:17–25

    Article  PubMed  CAS  Google Scholar 

  39. Schwerdt G, Freudinger R, Mildenberger S, Silbernagl S, Gekle M (1999) The nephrotoxin ochratoxin A induces apoptosis in cultured human proximal tubule cells. Cell Biol Toxicol 15:405–415

    Article  PubMed  CAS  Google Scholar 

  40. Dubourg L, Taniere P, Cochat P, Baverel G, Michoudet C (2002) Toxicity of chloroacetaldehyde is similar in adult and pediatric kidney tubules. Pediatr Nephrol 17:97–103

    Article  PubMed  Google Scholar 

  41. Lash LH, Putt DA, Matherly LH (2002) Protection of NRK-52E cells, a rat renal proximal tubular cell line, from chemical-induced apoptosis by overexpression of a mitochondrial glutathione transporter. J Pharmacol Exp Ther 303:476–486

    Article  PubMed  CAS  Google Scholar 

  42. Kroemer G, Redd JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  PubMed  CAS  Google Scholar 

  43. Jimenez JJ, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS (2003) Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 109:175–180

    Article  PubMed  CAS  Google Scholar 

  44. Schwerdt G, Freudinger R, Schuster C, Silbernagl S, Gekle M (2003) Inhibition of mitochondria prevents cell death in kidney epithelial cells by intra-and extracellular acidification. Kidney Int 63:1725–1735

    Article  PubMed  CAS  Google Scholar 

  45. Mayer B, Oberbauer R (2003) Mitochondrial regulation of apoptosis. News Physiol Sci 18:89–94

    PubMed  CAS  Google Scholar 

  46. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  47. Brown GC, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibility inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    Article  PubMed  CAS  Google Scholar 

  48. Vasquez OL, Almeida A, Bolanos JP (2001) Depletion of glutathione upregulates mitochondrial complex I expression in glial cells. J Neurochem 76:1593–1596

    Article  PubMed  CAS  Google Scholar 

  49. Lehrer-Graiwer JE, Firestein BL, Bredt DS (2000) Nitric oxide-mediated induction of cytochrome c oxidase MRNA and protein in a mouse macrophage cell line. Neurosci Lett 288:107–110

    Article  PubMed  CAS  Google Scholar 

  50. Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJ (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86:228–237

    Article  PubMed  CAS  Google Scholar 

  51. Brealey D, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, cooper CE, Singer M (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  PubMed  CAS  Google Scholar 

  52. Woroniecki R, Ferdinand JR, Morrow JS, Devarajan P (2003) Dissociation of spectrin-ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia. Am J Physiol Renal Physiol 284:F358–F364

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tom Smolenski for measurements of ATP. We are grateful to patients and parents for providing the urine samples and to Dr. Sue Rigden at Guy’s Hospital for providing access to her patients. This work was supported by the SDI-grant (Great Ormond Street Hospital, London, UK), the University Children’s Hospital Zurich (Switzerland) and the Swiss National Science Foundation (Berne/Zurich, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido F. Laube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laube, G.F., Shah, V., Stewart, V.C. et al. Glutathione depletion and increased apoptosis rate in human cystinotic proximal tubular cells. Pediatr Nephrol 21, 503–509 (2006). https://doi.org/10.1007/s00467-006-0005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-006-0005-x

Keywords

Navigation