Skip to main content
Log in

Genetic and metabolic determinants of increased plasma plasminogen activator inhibitor-1 activity in children with renal transplants

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Recent studies have shown that activity of plasminogen activator inhibitor-1 (PAI-1), a prothrombotic protein, may be increased in transplanted patients. The aim of the present investigation was to determine PAI-1 activity in pediatric recipients of renal transplants and to establish the relative contribution of both genetic and metabolic factors. In 29 children and adolescents with stable renal transplants, we related plasma PAI-1 activity to an indicator of inflammatory status [plasma concentration of C-reactive protein (CRP)] and to elements of the insulin resistance syndrome [body mass index (BMI), fasting insulinemia, HOMA index and plasma triglyceride, HDL-cholesterol, apolipoproteins A-1 and B concentrations]. Polymorphisms of PAI-1, apolipoprotein E (apoE) and angiotensin-converting enzyme (ACE) genes were also investigated. In all patients the study was repeated 1 year later. PAI-1 activity remained constantly elevated (23.4±22.8 and 18.6±7.8 U/ml in the first and second study, respectively, P=NS). Plasma PAI-1 activity correlated positively with CRP (P=0.001), BMI z score (P=0.02), fasting insulinemia (P=0.009), and HOMA index (P=0.006). No significant correlations were found in this population between plasma PAI-1 activity and age, gender, time elapsed after transplantation and plasma homocysteine, total cholesterol, LDL-cholesterol, HDL-cholesterol, apolipoprotein B, and apolipoprotein A-1. Plasma PAI-1 activity was not related to the cumulative dose of prednisone, cyclosporin A, or tacrolimus. Plasma PAI-1 activity was significantly higher in 5 children with apoE3/apoE4 genotype. No apparent influences of the PAI-1 4G/4G and ACE I/D genotypes were observed. In a multiple stepwise regression model, fasting insulinemia and apoE3/apoE4 genotype accounted for 45% of the observed plasma PAI-1 variability. We conclude that increased PAI-1 activity in children with stable renal transplants is determined both by genetic factors and by metabolic factors, the latter mainly linked to the insulin resistance syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Kasiske BL, Guijarro C, Massy ZA, Wiederkehr MR, Ma JZ (1996) Cardiovascular disease after renal transplantation. J Am Soc Nephrol 7:158–165

    CAS  PubMed  Google Scholar 

  2. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    CAS  PubMed  Google Scholar 

  3. Juhan-Vague I, Alessi MC (1993) Plasminogen activator inhibitor-1 and atherothrombosis. Thromb Haemost 70:138–143

    CAS  PubMed  Google Scholar 

  4. Henry M, Tregouët DA, Alessi MC, Aillaud MF, Visvikis S, Siest G, Tiret L, Juhan-Vague I (1998) Metabolic determinants are much more important than genetic polymorphisms in determining the PAI-1 activity and antigen plasma concentrations. A family study with part of the Stanislas cohort. Arterioscler Thromb Vasc Biol 18:84–91

    CAS  PubMed  Google Scholar 

  5. Sasaki A, Kurisu A, Ohno M, Ikeda Y (2001) Overweight/obesity, smoking, and heavy alcohol consumption are important determinants of plasma PAI-1 levels in healthy men. Am J Med Sci 322:19–23

    CAS  PubMed  Google Scholar 

  6. Skurk T, Lee YM, Rohrig K, Hauner H (2001) Effect of angiotensin peptides on PAI-1 expression and production in human adipocytes. Horm Metab Res 33:196–200

    Article  CAS  PubMed  Google Scholar 

  7. Nordt TK, Lohrmann J, Bode C (2001) Regulation of PAI-1 expression by genetic polymorphisms. Impact on atherogenesis. Thromb Res 103 [Suppl 1]:S1-S5

  8. Ye S, Green FR, Scrabin PY, Nicaud V, Bara L, Dawson SJ, Humphries SE, Evans A, Luc G, Cambou JP, Arveiler D, Henney AM, Cambien F (1995) The 4G/5G genetic polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) associated with differences in plasma PAI-1 activity but not with risk of myocardial infarction in the ECTIM study. Thromb Haemost 74:837–841

    CAS  PubMed  Google Scholar 

  9. Matsubara Y, Hayakawa T, Tsuda T, Takeshita E, Watanabe G, Murata M, Watanabe K, Ikeda Y (2000) Angiotensin converting enzyme insertion/deletion polymorphism is associated with plasma antigen levels of plasminogen activator inhibitor-1 in healthy Japanese population. Blood Coagul Fibrinolysis 11:115–120

    CAS  PubMed  Google Scholar 

  10. Pankow JS, Arnett DK, Borecki IB, Hunt SC, Eckfeldt JH, Folsom AR, Djousse L (2000) Lack of association between the angiotensin-converting enzyme insertion/deletion polymorphism and plasminogen activator inhibitor-1 antigen levels in the National Heart, Lung, and Blood Institute Family Heart Study. Blood Coagul Fibrinolysis 11:551–558

    Article  CAS  PubMed  Google Scholar 

  11. Cobb MM, Teitlebaum H, Risch N, Jekel J, Ostfeld A (1992) Influence of dietary fat, apolipoprotein E, phenotype, and sex on plasma lipoprotein levels. Circulation 86:849–857

    CAS  PubMed  Google Scholar 

  12. Irish AB (1997) Plasminogen activator inhibitor-1 activity in chronic renal disease and dialysis. Metabolism 46:36–40

    CAS  PubMed  Google Scholar 

  13. Segarra A, Chacón P, Martínez-Eyarre C, Argelaguer X, Vila J, Ruiz P, Fort J, Bartolomé J, Camps J, Moliner E, Pelegrí A, Marco F, Olmos A, Piera L (2001) Circulating levels of plasminogen activator inhibitor type-1, tissue plasminogen activator, and thrombomodulin in hemodialysis patients: biochemical correlations and role as independent predictors of coronary artery stenosis. J Am Soc Nephrol 12:1255–1261

    CAS  PubMed  Google Scholar 

  14. Patrassi GM; Sartori MT, Rigott P (1995) Reduced fibrinolytic potential one year after kidney transplantation: relationship to long-term steroid treatment. Transplantation 59:1416–1420

    CAS  Google Scholar 

  15. Marcucci R, Fedi S, Brunelli T, Pepe G, Prisco D, Rosati A, Zanazzi M, Bertoni E, Abbate R, Salvadori M (2001) High cystine levels in renal transplant recipients. Relationship with hyperhomocysteinemia and 5,10-MTHFR polymorphism. Transplantation 71:746–751

    CAS  PubMed  Google Scholar 

  16. Hernández M, Castellet J, Narvaiza JL, Rincón JM, Ruiz E, Sánchez E, Sobradillo B, Zurimendi A (1988) Curvas y tablas de crecimiento. Garsi, Madrid

  17. Estellés A, Dalmau J, Falcó C, Berbel O, Castelló R, España F, Aznar J (2001) Plasma PAI-1 levels in obese children. Effect of weight loss and influence of PAI-1 promoter 4G/5G genotype. Thromb Haemost 86:647–652

    PubMed  Google Scholar 

  18. Ford ES, Galuska DA, Gillispie C, Will J, Gilles WH, Dietz WH (2001) C-reactive protein and body mass index in children: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. J Pediatr 138:486–492

    Article  CAS  PubMed  Google Scholar 

  19. Shoji T, Emoto M, Nishizawa Y (2001) HOMA index to assess insulin resistance in renal failure patients. Nephron 89:348–349

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate on children derived from body weight and plasma creatinine. Pediatrics 58:259–263

    CAS  PubMed  Google Scholar 

  21. Mansfield MW, Stickland MH, Grant PJ (1995) Environmental and genetic factors in relation to elevated circulating levels of plasminogen activator inhibitor-1 in Caucasian patients with non-insulin-dependent diabetes mellitus. Thromb Haemost 74:842–847

    CAS  PubMed  Google Scholar 

  22. Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hhal. J Lipid Res 31:545–548

    CAS  PubMed  Google Scholar 

  23. Lovati E, Richard A, Frey BM, Frey FJ, Ferrari P (2001) Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease. Kidney Int 60:46–54

    Article  CAS  PubMed  Google Scholar 

  24. Barcedo-Sanz SA, González-Lamuño D, Málaga S, García-Fuentes M (1999) Impact of ApoE4 allele on total cholesterol levels of children in northern Spain. Clin Genet 55:69–70

    Article  PubMed  Google Scholar 

  25. Sinaiko AR, Jacobs DR, Steinberger J, Moran AS, Luepker R, Rocchini AP, Prineas RJ (2001) Insulin resistance syndrome in childhood: associations of the euglycemic insulin clamp and fasting insulin with fatness and other risk factors. J Pediatr 139:700–707

    Article  CAS  PubMed  Google Scholar 

  26. Aldámiz-Echevarría L, Sanjurjo P, Vallo A, Aquino L, Pérez-Nanclares G, Gimeno P, Rueda M, Ruiz JI, Rodríguez-Soriano J (2002) Hyperhomocysteinemia in children with renal transplants. Pediatr Nephrol 17:718–723

    Article  PubMed  Google Scholar 

  27. Shuldiner AR, Yang R, Gong D-W (2001) Resistin, obesity, and insulin resistance—the emerging role of the adipocyte as an endocrine organ. N Engl J Med 345:1345–1346

    Google Scholar 

  28. Ekstrand AV, Eriksson JG, Grönhagen-Riska C, Ahonen PJ, Groop LC (1992) Insulin resistance and insulin deficiency in the pathogenesis of posttransplant diabetes in man. Transplantation 53:563–569

    CAS  PubMed  Google Scholar 

  29. Hemesaeth J, Jenssen T, Midtvedt K, Hartmann A (2001) Insulin resistance after renal transplantation. Diabetes Care 24:2121–2126

    PubMed  Google Scholar 

  30. Rosenbloom AL, Joe JR, Young RS, Winter WE (1999) Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22:345–354

    CAS  PubMed  Google Scholar 

  31. Al-Uzri A, Stablein DM, Cohn R (2001) Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Transplantation 72:1020–1024

    CAS  PubMed  Google Scholar 

  32. Greenspan LC, Gitelman SE, Leung MA, Glidden DCV, Mathias RS (2001) Increased incidence in post-transplant diabetes mellitus in children: a case-control analysis. Pediatr Nephrol 17:1-5

    Article  Google Scholar 

  33. Van Duijnhoven EM, Christiaans MHL, Boots JMM, Wolffenbuttel BHR, Hoff JP van (2002) Glucose metabolism in the first 3 years after renal transplantation in patients receiving tacrolimus versus cyclosporine-based immunosuppression. J Am Soc Nephrol 13:213–220

    PubMed  Google Scholar 

  34. Boots JMM, Van Duijnhoven EM, Christiaans MHL, Wolffenbuttel BHR, Hoff JP van (2002) Glucose metabolism in renal transplant recipients on tacrolimus: the effect of steroid withdrawal and tacrolimus through level reduction. J Am Soc Nephrol 13:221–227

    CAS  PubMed  Google Scholar 

  35. Festa A, D´Agostino R, Tracy RP, Haffner SM (2002) Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes. The insulin resistance atherosclerosis study. Diabetes 41:1131–1137

    Google Scholar 

  36. Thögersen A, Jansson J, Boman K, Nilsson TK, Weinehall L, Huhtasaari F, Hallmans G (1998) High plasminogen activator inhibitor and tissue plasminogen levels in plasma precede a first acute myocardial infarction in both men and women. Evidence for the fibrinolytic system as an independent primary risk factor. Circulation 98:2241–2247

    PubMed  Google Scholar 

  37. Pischon T, Sharma AM (2001) Obesity as a risk factor in renal transplant patients. Nephrol Dial Transplant 16:14–17

    Article  CAS  Google Scholar 

  38. Banfi C, Mussoni L, Rise P, Cattaneo MG, Vicentini L, Battaini F, Galli C, Tremoli E (1999) Very low density lipoprotein-mediated signal transduction and plasminogen activator inhibitor type-1 in cultured HepG2 cells. Circ Res 85:208–217

    CAS  PubMed  Google Scholar 

  39. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    CAS  PubMed  Google Scholar 

  40. Ruan XZ, Varghese Z, Powis SH, Moorhead JF (2001) Dysregulation of LDL receptor under the influence of inflammatory cytokines: a new pathway for foam cell formation. Kidney Int 60:1716–1725

    Article  CAS  PubMed  Google Scholar 

  41. Ma LJ, Nakamura S, Whitsitt JS, Marcantoni C, Davidson JM, Fogo AB (2000) Regression of sclerosis in aging by an angiotensin inhibition-induced decrease in PAI-1. Kidney Int 58:2425–2436

    Article  CAS  PubMed  Google Scholar 

  42. Oda T, Jung YO, Kin HB, Cai X, López-Guisa JM, Ikeda Y, Eddy AA (2001) PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 60:587–596

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y, Pratt JR, Hartley B, Evans B, Zhang L, Sacks SH (1997) Expression of tissue type plasminogen activator and type 1 plasminogen activator inhibitor, and persistent fibrin deposition in chronic renal allograft failure. Kidney Int 52:371–377

    CAS  PubMed  Google Scholar 

  44. Fogo AB (2001) Progression and potential regression of glomerulosclerosis. Kidney Int 59:804–819

    Article  CAS  PubMed  Google Scholar 

  45. Filler G, Yang F, Martin A, Stolpe J, Neumayer HH, Hocher B (2001) Renin angiotensin system gene polymorphisms in pediatric renal transplant recipients. Pediatr Transplant 5:166–173

    CAS  PubMed  Google Scholar 

  46. Szabo A, Lutz J, Schleimer K, Antus B, Hamar P, Philip T, Heeman U (2000) Effect of angiotensin-converting enzyme inhibition on growth factor mRNA in chronic renal allograft rejection in the rat. Kidney Int 57:982–991

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was partly supported by a grant (01/1452) from the Fondo de Investigación Sanitaria, Spanish Ministry of Health (P. Sanjurjo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Rodríguez-Soriano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldámiz-Echevarría, L., Sanjurjo, P., Vallo, A. et al. Genetic and metabolic determinants of increased plasma plasminogen activator inhibitor-1 activity in children with renal transplants. Pediatr Nephrol 18, 749–755 (2003). https://doi.org/10.1007/s00467-003-1157-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-003-1157-6

Keywords

Navigation