Skip to main content
Log in

The composition, protein genesis and significance of the inner acrosomal membrane of eutherian sperm

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

As a consequence of the acrosomal reaction during fertilization, the inner acrosomal membrane (IAM) becomes exposed and forms the leading edge of the sperm for adhesive binding to and subsequent penetration of the zona-pellucida (ZP) of the metaphase-II-arrested oocyte. A premise of this review is that the IAM of spermatozoa anchors receptors and enzymes (on its extracellular side) that are required for sperm attachment to and penetration of the ZP. We propose a sperm cell fractionation strategy that allows for direct access to proteins bound to the extracellular side of the IAM. We review the types of integral and peripheral IAM proteins that have been found by this approach and that have been implicated in ZP recognition and lysis. We also propose a scheme for the origin and assembly of these proteins within the developing acrosome during spermiogenesis. During development, the extravesicular side of the membrane of the acrosomic vesicle is coated by peripheral proteins that transport and bind this secretory vesicle to the spermatid nucleus. The part of the membrane that binds to the nucleus becomes the IAM, while its extravesicular protein coat, which is retained between the IAM and the nuclear envelope of spermatozoa becomes the subacrosomal layer of the perinuclear theca (SAL-PT). Another premise of this review is that the IAM of spermatozoa is bound with proteins (on its intracellular side), namely the SAL-PT proteins, which hold the clue to the mechanism of acrosomal-nuclear docking. We propose a sperm cell fractionation strategy that allows for direct access to SAL-PT proteins. We then review the types of SAL-PT proteins that have been found by this approach and that have been implicated in transporting and binding the acrosome to the sperm nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AV:

acrosomic vesicle

bNLS:

bipartite nuclear localization signal

IAM:

inner acrosomal membrane

IAM38:

IAM protein 38

IAMC:

IAM coat

IVF:

in vitro fertilization

KIFC1:

a C-terminal kinesin motor protein

KPNA:

karyopherin

KPNA6:

karyopherin α6

KPNB1:

karyopherin β1

KRLn:

KRLSKAKNLIE peptide

mKRLn:

mutant KRLn

MMP2:

matrix metallo-proteinase 2

NE:

nuclear envelope

OAM:

outer acrosomal membrane

OPL:

outer periacrosomal layer

PAV:

proacrosomic vesicles or granules

PAS-PT:

postacrosomal sheath of perinuclear theca

PAWP:

post-acrosomal sheath WW-domain binding protein

pro-MMP2:

inactive zymogen of MMP2

PRSS21:

testicular serine protease 5/testisin

PT:

perinuclear theca

RAB2A:

RAB2 subfamily member A

SAL-PT:

subacrosomal layer of perinuclear theca

SAMP14:

sperm acrosome membrane protein 14

SP38:

sperm protein 38

SPACA1:

sperm acrosome membrane-associated protein 1

SSpH:

sonicated sperm heads

SubH2Bv:

subacrosomal histone H2B variant

ZP:

zona pellucida

ZPBP1:

zona pellucida binding protein 1

References

  • Adham IM, Nayernia K, Engel W (1997) Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev 46:370–376

    Article  PubMed  CAS  Google Scholar 

  • Aul RB, Oko R (2002) The major subacrosomal occupant of bull spermatozoa is a novel histone H2B variant associated with the forming acrosome during spermiogenesis. Dev Biol 242:376–387

    Article  PubMed  Google Scholar 

  • Baba T, Azuma S, Kashiwabara S, Toyoda Y (1994) Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 269:31845–31849

    PubMed  CAS  Google Scholar 

  • Barth AD, Oko R (1989) Normal bovine spermatogenesis and sperm maturation. In: Barth AD, Oko R (eds) Abnormal morphology of bovine spermatozoa. Iowa State University Press, Ames, pp 19–88

    Google Scholar 

  • Bleil JD, Wassarman PM (1986) Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm. J Cell Biol 102:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Bleil JD, Greve JM, Wassarman PM (1988) Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosome-reacted sperm to eggs. Dev Biol 128:376–385

    Article  PubMed  CAS  Google Scholar 

  • Bülow M von, Heid H, Hess H, Franke WW (1995) Molecular nature of calicin, a major basic protein of the mammalian sperm head cytoskeleton.Exp Cell Res 219:407–413

    Article  Google Scholar 

  • Bülow Mvon, Rackwitz HR, Zimbelmann R, Franke WW (1997)CP beta3, a novel isoform of an actin-binding protein, is a component of the cytoskeletal calyx of the mammalian sperm head. Exp Cell Res 233:216–224

    Article  Google Scholar 

  • Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399:221–229

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, Rodriguez H, Zara L, Yu Y, Xu W, Oko R (2012) MMP2 and acrosin are major proteinases of the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res (in press)

  • Fraser LR (1982) p-Aminobenzamidine, an acrosin inhibitor, inhibits mouse sperm penetration of the zona pellucida but not the acrosome reaction. J Reprod Fertil 65:185–194

    Article  PubMed  CAS  Google Scholar 

  • Frohnert C, Schweizer S, Hoyer-Fender S (2011) SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol Hum Reprod 17:207–218

    Article  PubMed  CAS  Google Scholar 

  • Gerton GL (2002) Function of the acrosome. In: Hardy EM (ed) Fertilization. Academic Press, New York, pp 265–302

    Chapter  Google Scholar 

  • Gorlich D, Henklein P, Laskey RA, Hartmann E (1996) A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J 15:1810–1817

    PubMed  CAS  Google Scholar 

  • Hao Z, Wolkowicz MJ, Shetty J, Klotz K, Bolling L, Sen B, Westbrook VA, Coonrod S, Flickinger CJ, Herr JC (2002) SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol Reprod 66:735–744

    Article  PubMed  CAS  Google Scholar 

  • Heid H, Figge U, Winter S, Kuhn C, Zimbelmann R, Franke W (2002)Novel actin-related proteins Arp-T1 and Arp-T2 as components of the cytoskeletal calyx of the mammalian sperm head.Exp Cell Res 279:177–187

    Article  PubMed  CAS  Google Scholar 

  • Hess H, Heid H, Franke WW (1993) Molecular characterization of mammalian cylicin, a basic protein of the sperm head cytoskeleton.J Cell Biol 122:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Hess H, Heid H, Zimbelmann R, Franke WW (1995) The protein complexity of the cytoskeleton of bovine and human sperm heads: the identification and characterization of cylicin II.Exp Cell Res 218:174–182

    Article  PubMed  CAS  Google Scholar 

  • Huang TT Jr, Yanagimachi R (1985) Inner acrosomal membrane of mammalian spermatozoa: its properties and possible functions in fertilization. Am J Anat 174:249–268

    Article  PubMed  Google Scholar 

  • Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R (2011) Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl Acad Sci USA 108:20008–20011

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 108:4892–4896

    Article  PubMed  CAS  Google Scholar 

  • Jones R, James PS, Oxley D, Coadwell J, Suzuki-Toyota F, Howes EA (2008) The equatorial subsegment in mammalian spermatozoa is enriched in tyrosine phosphorylated proteins. Biol Reprod 79:421–431

    Article  PubMed  CAS  Google Scholar 

  • Kawano N, Kang W, Yamashita M, Koga Y, Yamazaki T, Hata T, Miyado K, Baba T (2010) Mice lacking two sperm serine proteases, ACR and PRSS21, are subfertile, but the mutant sperm are infertile in vitro. Biol Reprod 83:359–369

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Foster JA, Kvasnicka KW, Gerton GL (2011) Transitional states of acrosomal exocytosis and proteolytic processing of the acrosomal matrix in guinea pig sperm. Mol Reprod Dev 78:930–941

    Article  PubMed  CAS  Google Scholar 

  • Lin YN, Roy A, Yan W, Burns KH, Matzuk MM (2007) Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 27:6794–6805

    Article  PubMed  CAS  Google Scholar 

  • Lindstad RI, Sylte I, Mikalsen SO, Seglen PO, Berg E, Winberg JO (2005) Pancreatic trypsin activates human promatrix metalloproteinase-2. J Mol Biol 350:682–698

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto H, Chang MC (1973) Effects of protease inhibitors on the fertilizing capacity of hamster spermatozoa. Biol Reprod 9:533–537

    PubMed  CAS  Google Scholar 

  • Monea S, Lehti K, Keski-Oja J, Mignatti P (2002) Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 192:160–170

    Article  PubMed  CAS  Google Scholar 

  • Mori E, Baba T, Iwamatsu A, Mori T (1993) Purification and characterization of a 38-kDa protein, Sp38, with zona pellucida-binding property from porcine epididymal sperm. Biochem Biophys Res Commun 196:196–202

    Article  PubMed  CAS  Google Scholar 

  • Mori E, Kashiwabara S, Baba T, Inagaki Y, Mori T (1995) Amino acid sequences of porcine Sp38 and proacrosin required for binding to the zona pellucida. Dev Biol 168:575–583

    Article  PubMed  CAS  Google Scholar 

  • Mortillo S, Wassarman PM (1991) Differential binding of gold-labeled zona pellucida glycoproteins mZP2 and mZP3 to mouse sperm membrane compartments. Development 113:141–149

    PubMed  CAS  Google Scholar 

  • Mountjoy JR, Xu W, McLeod D, Hyndman D, Oko R (2008) RAB2A: a major subacrosomal protein of bovine spermatozoa implicated in acrosomal biogenesis. Biol Reprod 79:223–232

    Article  PubMed  CAS  Google Scholar 

  • Oko R (1995) Developmental expression and possible role of perinuclear theca proteins in mammalian spermatozoa. Reprod Fertil Dev 7:777–797

    Article  PubMed  CAS  Google Scholar 

  • Oko R (1998) Occurrence and formation of cytoskeletal proteins in mammalian spermatozoa. Andrologia 30:193–206

    Article  PubMed  CAS  Google Scholar 

  • Oko R, Maravei D (1994) Protein composition of the perinuclear theca of bull spermatozoa. Biol Reprod 50:1000–1014

    Article  PubMed  CAS  Google Scholar 

  • Oko R, Maravei D (1995) Distribution and possible role of perinuclear theca proteins during bovine spermiogenesis. Microsc Res Tech 32:520–532

    Article  PubMed  CAS  Google Scholar 

  • Oko R, Morales CR (1994) A novel testicular protein, with sequence similarities to a family of lipid binding proteins, is a major component of the rat sperm perinuclear theca.Dev Biol 166:235–245

    Article  PubMed  CAS  Google Scholar 

  • Oko R, Sutovsky P (2009) Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J Reprod Immunol 83:2–7

    Article  PubMed  CAS  Google Scholar 

  • Oko R, Aul R, Wu A, Sutovsky P (2001) The sperm head skeleton. In: Robaire B, Chemes H, Morales CR (eds) Andrology in 21st Century. Medimond, Englewood, pp 37–51

    Google Scholar 

  • Oko R, Donald A, Xu W, Spoel AC van der (2011) Fusion failure of dense-cored proacrosomal vesicles in an inducible mouse model of male infertility. Cell Tissue Res 346:119–134

    Article  PubMed  CAS  Google Scholar 

  • Sa SJ, Rhee HH, Cheong HT, Yang BK, Park CK (2006) Effects of plasmin on sperm-oocyte interactions during in vitro fertilization in the pig. Anim Reprod Sci 95:273–282

    Article  PubMed  CAS  Google Scholar 

  • Saling PM (1981) Involvement of trypsin-like activity in binding of mouse spermatozoa to zonae pellucidae. Proc Natl Acad Sci USA 78:6231–6235

    Article  PubMed  CAS  Google Scholar 

  • Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL, Diekman AB, Westbrook VA, Farris EM, Hao Z, Coonrod SA, Flickinger CJ, Herr JC (2003) SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 278:30506–30515

    Article  PubMed  CAS  Google Scholar 

  • Smokovitis A, Kokolis N, Taitzoglou I, Rekkas C (1992) Plasminogen activator: the identification of an additional proteinase at the outer acrosomal membrane of human and boar spermatozoa. Int J Fertil 37:308–314

    PubMed  CAS  Google Scholar 

  • Sutovsky P (2011) Sperm proteasome and fertilization. Reproduction 142:1–14

    Article  PubMed  CAS  Google Scholar 

  • Taitzoglou I, Kokolis N, Smokovitis A (1996) Release of plasminogen activator and plasminogen activator inhibitor from spermatozoa of man, bull, ram and boar during acrosome reaction. Mol Androl 8:187–197

    CAS  Google Scholar 

  • Tesarik J, Drahorad J, Peknicova J (1988) Subcellular immunochemical localization of acrosin in human spermatozoa during the acrosome reaction and zona pellucida penetration. Fertil Steril 50:133–141

    PubMed  CAS  Google Scholar 

  • Tovich PR, Oko RJ (2003) Somatic histones are components of the perinuclear theca in bovine spermatozoa. J Biol Chem 278:32431–32438

    Article  PubMed  CAS  Google Scholar 

  • Tovich PR, Sutovsky P, Oko RJ (2004) Novel aspect of perinuclear theca assembly revealed by immunolocalization of non-nuclear somatic histones during bovine spermiogenesis. Biol Reprod 71:1182–1194

    Article  PubMed  CAS  Google Scholar 

  • Tran MH, Aul RB, Xu W, Hoorn FA van der, Oko R (2011) Involvement of classical bipartite/karyopherin nuclear import pathway components in acrosomal trafficking and assembly during bovine and murid spermiogenesis. Biol Reprod 86:84

    Article  Google Scholar 

  • Wu AT, Sutovsky P, Manandhar G, Xu W, Katayama M, Day BN, Park KW, Yi YJ, Xi YW, Prather RS, Oko R (2007a) PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J Biol Chem 282:12164–12175

    Article  PubMed  CAS  Google Scholar 

  • Wu AT, Sutovsky P, Xu W, Spoel AC van der, Platt FM, Oko R (2007b) The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport. Dev Biol 312:471–483

    Article  PubMed  CAS  Google Scholar 

  • Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729

    Article  PubMed  CAS  Google Scholar 

  • Yi YJ, Manandhar G, Sutovsky M, Zimmerman SW, Jonakova V, Leeuwen FW van, Oko R, Park CS, Sutovsky P (2010) Interference with the 19S proteasomal regulatory complex subunit PSMD4 on the sperm surface inhibits sperm-zona pellucida penetration during porcine fertilization. Cell Tissue Res 341:325–340

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Xu W, Yi YJ, Sutovsky P, Oko R (2006) The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: characterization of its most prominent polypeptide (IAM38). Dev Biol 290:32–43

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Vanhorne J, Oko R (2009) The origin and assembly of a zona pellucida binding protein, IAM38, during spermiogenesis. Microsc Res Tech 72:558–565

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Oko.

Additional information

This work was supported by grants to R.O. from NSERC (RGPIN/192093) and CIHR(MOP-84440) of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, M., Xu, W. & Oko, R. The composition, protein genesis and significance of the inner acrosomal membrane of eutherian sperm. Cell Tissue Res 349, 733–748 (2012). https://doi.org/10.1007/s00441-012-1433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1433-5

Keywords

Navigation