Skip to main content

Advertisement

Log in

Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca2+ measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca2+ concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    CAS  PubMed  Google Scholar 

  • Andoh A, Bamba S, Brittan M, Fujiyama Y, Wright NA (2007) Role of intestinal subepithelial myofibroblasts in inflammation and regenerative response in the gut. Pharmacol Ther 114:94–106

    Article  CAS  PubMed  Google Scholar 

  • Berthoud H-R, Kressel M, Raybould HE, Neuhuber WL (1995) Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo Dil-tracing. Anat Embryol 191:203–212

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP (2003) ATP and sensory transduction in the enteric nervous system. Neuroscientist 9:243–260

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP, Bertrand RL (2010) Serotonin release and uptake in the gastrointestinal tract. Autonomic Neurosci: Basic and Clinical 153:47–57

    Article  CAS  Google Scholar 

  • Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322

    Article  CAS  PubMed  Google Scholar 

  • Bulut K, Felderbauer P, Deters S, Hoeck K, Schmit-Choudhury A, Schmidt WE, Hoffmann P (2008) Sensory neuropeptides and epithelial cell restitution: the relevance of SP- and CGRP-stimulated mast cells. Int J Colorectal Dis 23:535–541

    Article  PubMed  Google Scholar 

  • Burnstock G (2008) The journey to establish purinergic signaling in the gut. Neurogastroenterol Motil 208(suppl 1):8–19

    Article  Google Scholar 

  • Cascieri MA, Ber E, Fong TM, Sadowski S, Bansal A, Swain C, Seward E, Frances B, Burns D, Strader CD (1992) Characterization of the binding of a potent, selective, radioiodinated antagonist to the human neurokinin-1 receptor. Mol Pharmacol 42:458–463

    CAS  PubMed  Google Scholar 

  • Cooke HJ, Wunderlich J, Christofi FL (2003) “The force be with you”: ATP in gut mechanosensory transduction. News Physiol Sci 18:43–49

    CAS  PubMed  Google Scholar 

  • Cooke HJ, Xue J, Yu JG, Wunderlich J, Wang YZ, Guzman J, Javed N, Christofi FL (2004) Mechanical stimulation releases nucleotides that activate P2Y1 receptors to trigger neural reflex chloride secretion in guinea pig distal colon. J Comp Neurol 469:1–15

    Article  CAS  PubMed  Google Scholar 

  • Cummins AG, Thompson FM (1997) Postnatal changes in mucosal immune response: a physiological perspective of breast feeding and weaning. Immunol Cell Biol 75:419–429

    Article  CAS  PubMed  Google Scholar 

  • Cummins AG, Steele TW, LaBrooy JT, Shearman DJC (1988) Maturation of the rat small intestine at weaning: changes in epithelial cell kinetics, bacterial flora, and mucosal immune activity. Gut 29:1672–1679

    Article  CAS  PubMed  Google Scholar 

  • Deane HW (1964) Some electron microscopic observations on the lamina propria of the gut, with comments on the close association of macrophages, plasma cells, and eosinophils. Anat Rec 149:453–473

    Article  CAS  PubMed  Google Scholar 

  • Desaki J, Shimizu M (2000) A re-examination of the cellular reticulum of fibroblast-like cells in the rat small intestine by scanning electron microscopy. J Electron Microsc (Tokyo) 49:203–208

    CAS  Google Scholar 

  • Desaki J, Fujiwara T, Komuro T (1984) A cellular reticulum of fibroblast-like cells in the rat intestine: scanning and transmission electron microscopy. Arch Histol Jpn 47:179–186

    Article  CAS  PubMed  Google Scholar 

  • Eastwood C, Maubach K, Kirkup AJ, Grundy D (1998) The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neurosci Lett 254:145–148

    Article  CAS  PubMed  Google Scholar 

  • Faussone-Pellegrini MS (2006) Relationships between neurokinin receptor-expressing interstitial cells of Cajal and tachykininergic nerves in the gut. J Cell Mol Med 10:20–32

    Article  CAS  PubMed  Google Scholar 

  • Felderbauer P, Bulut K, Hoeck K, Deters S, Schmidt WE, Hoffmann P (2007) Substance P induces intestinal wound healing via fibroblasts-evidense for a TGF-b-dependent effect. Int J Colorectal Dis 22:1475–1480

    Article  PubMed  Google Scholar 

  • Furness JB, Kunze WA, Clerc N (1999) Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: neural, endocrine, and immune responses. Am J Physiol 277:G922–G928

    CAS  PubMed  Google Scholar 

  • Furness JB, Clerc N, Vogalis F, Stebbing MJ (2003) The enteric nervous system and its extrinsic connections. In: Yamada T (ed) The textbook of gastroenterology Vol 1, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 12–34

    Google Scholar 

  • Furuya S, Furuya K (1993) Characteristics of cultured subepithelial fibroblasts of rat duodenal villi. Anat Embryol (Berl) 187:529–538

    Article  CAS  Google Scholar 

  • Furuya S, Furuya K (2007) Subepithelial fibroblasts in intestinal villi: roles in intercellular communication. Int Rev Cytol 264:165–223

    Article  CAS  PubMed  Google Scholar 

  • Furuya S, Naruse S, Nakayama T, Nokihara K (1990) [125I]-endothelin binds to fibroblasts beneath the epithelium of rat small intestine. J Electron Micros 39:264–268

    CAS  Google Scholar 

  • Furuya K, Furuya S, Yamagishi S (1994) Intracellular calcium responses and shape conversions induced by endothelin in cultured subepithelial fibroblasts of rat duodenal villi. Pflügers Arch 428:97–104

    Article  CAS  PubMed  Google Scholar 

  • Furuya S, Hiroe T, Ogiso N, Ozaki T, Hori S (2001) Localization of endothelin-A and -B receptors during the postnatal development of rat cerebellum. Cell Tissue Res 305:307–324

    Article  CAS  PubMed  Google Scholar 

  • Furuya K, Sokabe M, Furuya S (2005a) Characteristics of subepithelial fibroblasts as a mechano-sensor in the intestine: cell-shape-dependent ATP release and P2Y1 signaling. J Cell Sci 118:3289–3304

    Article  CAS  PubMed  Google Scholar 

  • Furuya S, Furuya K, Sokabe M, Hiroe T, Ozaki T (2005b) Characteristics of cultured subepithelial fibroblasts in the rat small intestine. II. Localization and functional analysis of endothelin receptors and cell-shape-independent gap junction permeability. Cell Tissue Res 319:103–119

    Article  CAS  PubMed  Google Scholar 

  • Goode T, O’Connell J, Anton P, Wong H, Reeve J, O’Sullivan G, Collins J, Shanahan H (2000) Neurokinin-1 receptor expression in inflammatory bowel disease: molecular quantitation and localisation. Gut 47:387–396

    Article  CAS  PubMed  Google Scholar 

  • Gourine AV, Wood JD, Burnstock G (2009) Purinergic signaling in autonomic control. Trends Neurosci 32:241–248

    Article  CAS  PubMed  Google Scholar 

  • Grady EF, Baluk P, Böhm S, Gamp PD, Wong H, Payan DG, Ansel J, Portbury AL, Furness JB, McDonald DM, Bunnett NW (1996) Characterization of antisera specific to NK1, NK2, and NK3 neurokinin receptors and their utilization to localize receptors in the rat gastrointestinal tract. J Neurosci 16:6975–6986

    CAS  PubMed  Google Scholar 

  • Grundy D (2000) The intestinal mucosa as a target and trigger for enteric reflexes. Gut (suppl IV) 47:44–45

    Google Scholar 

  • Grundy D (2006) Serotonin and sensory signalling from the gastrointestinal lumen. J Physiol 5751:1–2

    Article  Google Scholar 

  • Güldner FH, Wolff JR, Keyserlingk DG (1972) Fibroblasts as a part of the contractile system in duodenal villi of rat. Z Zellforsch Mikrosk Anat 135:349–360

    Article  PubMed  Google Scholar 

  • Hashimoto Y, Komuro T (1988) Close relationships between the cells of the immune system and the epithelial cells in the rat small intestine. Cell Tissue Res 254:41–47

    Article  CAS  PubMed  Google Scholar 

  • Hausmann M, Rogler G (2008) Immune-non immune networks in intestinal inflammation. Curr Drug Targets 9:388–394

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann P, Hoeck K, Deters S, Werner-Martini I, Schmidt WE (2010) Substance P and calcitonin gene related peptide induce TGF-alpha expression in epithelial cells via mast cells and fibroblasts. Regul Pept 161:33–37

    Article  CAS  PubMed  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997a) Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 73:173–217

    Article  CAS  PubMed  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997b) Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 73:219–263

    Article  CAS  PubMed  Google Scholar 

  • Hosoyamada Y, Sakai T (2007) Mechanical components of rat intestinal villi as revealed by ultrastructural analysis with special reference to the axial smooth muscle cells in the villi. Arch Histol Cytol 70:107–116

    Article  PubMed  Google Scholar 

  • Iino S, Ward SM, Sanders KM (2004) Interstitial cells of Cajal are functionally innervated by excitatory motor neurons in the murine intestine. J Physiol 556:521–530

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga K, Murata T, Okada M, Hori M, Ozaki H (2009) Carbachol induces Ca(2+)-dependent contraction via muscarinic M2 and M3 receptors in rat intestinal subepithelial myofibroblasts. J Pharmacol Sci 110:306–314

    Article  CAS  PubMed  Google Scholar 

  • Joyce NC, Haire MF, Palade GE (1987) Morphological and biochemical evidence for a contractile cell network within the rat intestinal mucosa. Gastroenterology 92:68–81

    CAS  PubMed  Google Scholar 

  • Jun JY, Choi S, Yeum CH, Chang IY, You HJ, Park CK, Kim MY, Kong ID, Kim MJ, Lee KP, So I, Kim KW (2004) Substance P induces inward current and regulates pacemaker currents through tachykinin NK1 receptor in cultured interstitial cells of Cajal of murine small intestine. Eur J Pharmacol 495:35–42

    Article  CAS  PubMed  Google Scholar 

  • Karaki H, Mitsui-Saito M, Takimoto M, Oda K, Okada T, Ozaki T, Kunieda T (1996) Lack of endothelin ETB receptor binding and function in the rat with a mutant ETB receptor gene. Biochem Biophys Res Commun 222:139–143

    Article  CAS  PubMed  Google Scholar 

  • Komuro T (1990) Re-evaluation of fibroblast-like cells. Anat Embryol (Berl) 182:103–112

    CAS  Google Scholar 

  • Komuro T, Hashimoto Y (1990) Three-dimensional structure of the rat intestinal wall (mucosa and submucosa). Arch Histol Cytol 53:1–21

    Article  CAS  PubMed  Google Scholar 

  • Kunieda T, Kumagai T, Tsuji T, Ozaki T, Karaki H, Ikadai H (1996) A mutation in endothelin-B receptor gene causes myenteric aganglionosis and coat color spotting in rats. DNA Res 3:101–105

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Semba R, Tsuzuki M, Ozaki T (2001) Distribution of peripheral nerve terminals in the small and large intestine of congenital aganglionosis rats (Hirschsprung’s disease rats). Pathol Int 51:145–157

    Article  CAS  PubMed  Google Scholar 

  • Parker FG, Barnes EN, Kaye GI (1974) The pericryptal fibroblast sheath. IV. Replication, migration, and differentiation of the subepithelial fibroblasts of the crypt and villus of the rabbit jejunum. Gastroenterology 67:607–609

    CAS  PubMed  Google Scholar 

  • Patacchini R, Maggi CA (1992) Effect of newly developed tachykinin agonist and antagonists on the guinea pig isolated gallbladder. J Pharmacol Exp Ther 261:191–194

    CAS  PubMed  Google Scholar 

  • Pitha J (1968) The fine structure of clear fibroblast-like cells in the lamina propria of the small intestine. J Ultrastruct Res 22:231–239

    Article  CAS  PubMed  Google Scholar 

  • Popescu LM, Gherghiceanu M, Cretoiu D, Radu E (2005) The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. J Cell Mol Med 9:714–730

    Article  CAS  PubMed  Google Scholar 

  • Portbury AL, Furness JB, Young HM, Southwell BR, Vigna SR (1996) Localisation of NK1 receptor immunoreactivity to neurons and interstitial cells of the guinea-pig gastrointestinal tract. J Comp Neurol 367:342–351

    Article  CAS  PubMed  Google Scholar 

  • Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999a) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C9

    CAS  PubMed  Google Scholar 

  • Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999b) Myofibroblasts. II. Intestinal subepithelial fibroblasts. Am J Physiol 277:C183–C201

    CAS  PubMed  Google Scholar 

  • Powell DW, Adegboyega PA, Di Mari JF, Mifflin RC (2005) Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 289:G2–G7

    Article  CAS  PubMed  Google Scholar 

  • Renzi D, Pellegrini B, Tonelli F, Surrenti C, Calabrò A (2000) Substance P (neurokinin-1) and neurokinin A (neurokinin-2) receptor gene and protein expression in the healthy and inflamed human intestine. Am J Pathol 157:1511–1522

    CAS  PubMed  Google Scholar 

  • Rumessen JJ, Vanderwinden JM (2003) Interstitial cells in the musculature of the gastrointestinal tract: Cajal and beyond. Int Rev Cytol 229:115–208

    Article  CAS  PubMed  Google Scholar 

  • Saada JI, Barrera CA, Reyes VE, Adegboyega PA, Suarez G, Tamerisa RA, Pang KF, Bland DA, Mifflin RC, Mari JF DI, Powell DW (2004) Intestinal myofibroblasts and immune tolerance. Ann NY Acad Sci 1029:379–381

    Article  CAS  PubMed  Google Scholar 

  • Saada JI, Pinchuk IV, Barrera CA, Adegboyega PA, Suarez G, Mifflin RC, Di Mari JF, Reyes VE, Powell DW (2006) Subepithelial myofibroblasts are novel nonprofessional APCs in the human colonic mucosa1. J Immunology 177:5968–5979

    CAS  Google Scholar 

  • Sanders KM, Koh SD, Ward SM (2006) Interstitial cells of Cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol 68:307–343

    Article  CAS  PubMed  Google Scholar 

  • Sanderson IR (2007) Dietary modulation of GALT. J Nutr 137:2557S–2562S

    CAS  PubMed  Google Scholar 

  • Shigemoto R, Nakaya Y, Nomura S, Ogawa-Meguro R, Ohisi H, Kaneko T, Nakanishi S, Mizuno N (1993) Immunocytochemical localization of rat substance P receptor in the striatum. Neurosci Lett 153:157–160

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Matsuyama H, Shiina T, Takewaki T, Furness JB (2008) Tachykinins and their functions in the gastrointestinal tract. Cell Mol Life Sci 65:295–311

    Article  CAS  PubMed  Google Scholar 

  • Song Z-M, Brookes SJH, Costa M (1991) Identification of myenteric neurons which project to the mucosa of the guinea-pig small intestine. Neurosci Lett 129:294–298

    Article  CAS  PubMed  Google Scholar 

  • Southwell BR, Furness JB (2001) Immunohistochemical demonstration of the NK1 tachykinin receptor on muscle and epithelia in guinea pig intestine. Gasteroenterology 120:1140–1151

    Article  CAS  Google Scholar 

  • Southwell BR, Woodman HL, Royal SJ, Furness JB (1998) Movement of villi induces endocytosis of NK1 receptors in myenteric neurons from guinea-pig ileum. Cell Tissue Res 292:37–45

    Article  CAS  PubMed  Google Scholar 

  • Tan LL, Bornstein JC, Anderson CR (2008) Distinct chemical classes of medium-sized transient receptor potential channel vanilloid 1-immunoreactive dorsal root ganglion neurons innervate the adult mouse jejunum and colon. Neuroscience 156:334–343

    Article  CAS  PubMed  Google Scholar 

  • Tan LL, Bornstein JC, Anderson CR (2009) Neurochemical and morphological phenotypes of vagal afferent neurons innervating the adult mous jejunum. Neurogatroenterol Motil 21:994–1001

    Article  CAS  Google Scholar 

  • Toyoda H, Ina K, Kitamura H, Tsuda T, Shimada T (1997) Organization of the lamina propria mucosae of rat intestinal mucosa, with special reference to the subepithelial connective tissue. Acta Anat (Basel) 158:172–184

    Article  CAS  Google Scholar 

  • Valentich JD, Popov V, Saada JI, Powell DW (1997) Phenotypic characterization of an intestinal subepithelial myofibroblast cell line. Ame J Physiol 272:C1513–C1524

    CAS  Google Scholar 

  • Vannucchi MG, Faussone-Pellegrini MS (2000) NK1, NK2 and NK3 tachykinin receptor localization and tachykinin distribution in the ileum of the mouse. Anat Embryol (Berl) 202:247–255

    Article  CAS  Google Scholar 

  • Vigna SR, Bowden JJ, McDonald DM, Fisher J, Okamoto A, McVey DC, Payan DG, Bunnett NW (1994) Characterization of antibodies to the rat substance P (NK-1) receptor and to a chimeric substance P receptor expressed in mammalian cells. J Neurosci 14:834–845

    CAS  PubMed  Google Scholar 

  • Wang XU, Sanders KM, Ward SE (1999) Intimate relationship between interstitial cells of Cajal and enteric nerves in the guinea-pig small intestine. Cell Tissue Res 295:247–256

    Article  CAS  PubMed  Google Scholar 

  • Ward SM, McLaren GJ, Sanders KM (2006) Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. J Physiol 573:147–159

    Article  CAS  PubMed  Google Scholar 

  • Yokota Y, Sasai Y, Tanaka K, Fujiwara T, Tsuchida K, Shigemoto R, Kakizuka A, Ohkubo H, Nakanishi S (1989) Molecular characterization of a functional cDNA for rat substance P receptor. J Biol Chem 264:17649–17652

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Ms. Katuyo Tsuchiya for the help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonoko Furuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, S., Furuya, K., Shigemoto, R. et al. Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi. Cell Tissue Res 342, 243–259 (2010). https://doi.org/10.1007/s00441-010-1056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1056-7

Keywords

Navigation