Skip to main content

Advertisement

Log in

Differential effects of muscle fibre length and insulin on muscle-specific mRNA content in isolated mature muscle fibres during long-term culture

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The aims of this study were (1) to determine the relationship between muscle fibre cross-sectional area and cytoplasmic density of myonuclei in high- and low-oxidative Xenopus muscle fibres and (2) to test whether insulin and long-term high fibre length caused an increase in the number of myonuclei and in the expression of α-skeletal actin and of myogenic regulatory factors (myogenin and MyoD) in these muscle fibres. In high- and low-oxidative muscle fibres from freshly frozen iliofibularis muscles, the number of myonuclei per millimetre fibre length was proportional to muscle fibre cross-sectional area. The in vivo myonuclear density thus seemed to be strictly regulated, suggesting that the induction of hypertrophy required the activation of satellite cells. The effects of muscle fibre length and insulin on myonuclear density and myonuclear mRNA content were investigated on high-oxidative single muscle fibres cultured for 4–5 days. Muscle fibres were kept at a low length (~15% below passive slack length) in culture medium with a high insulin concentration (~6 nmol/l: “high insulin medium”) or without insulin, and at a high length (~5% above passive slack length) in high insulin medium. High fibre length and high insulin medium did not change the myonuclear density of isolated muscle fibres during culture. High insulin increased the myonuclear α-skeletal actin mRNA content, whereas fibre length had no effect on α-skeletal actin mRNA content. After culture at high fibre length in high insulin medium, the myonuclear myogenin mRNA content was 2.5-fold higher than that of fibres cultured at low length in high insulin medium or in medium without insulin. Myonuclear MyoD mRNA content was not affected by fibre length or insulin. These in vitro experiments indicate that high muscle fibre length and insulin enhance muscle gene expression but that other critical factors are required to induce adaptation of muscle fibre size and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams GR, Haddad F, Baldwin KM (1999) Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 87:1705–1712

    PubMed  CAS  Google Scholar 

  • Adams GR, Caiozzo VJ, Haddad F, Baldwin KM (2002) Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol Cell Physiol 283:C1182–C1195

    PubMed  CAS  Google Scholar 

  • Aigner S, Pette D (1990) In situ hybridization of slow myosin heavy chain mRNA in normal and transforming rabbit muscles with the use of a nonradioactively labeled cRNA. Histochemistry 95:11–18

    Article  PubMed  CAS  Google Scholar 

  • Allen DL, Monke SR, Talmadge RJ, Roy RR, Edgerton VR (1995) Plasticity of myonuclear number in hypertrophied and atrophied mammalian skeletal muscle fibers. J Appl Physiol 78:1969–1976

    PubMed  CAS  Google Scholar 

  • Allen DL, Yasui W, Tanaka T, Ohira Y, Nagaoka S, Sekiguchi C, Hinds WE, Roy RR, Edgerton VR (1996) Myonuclear number and myosin heavy chain expression in rat soleus single muscle fibers after spaceflight. J Appl Physiol 81:145–151

    PubMed  CAS  Google Scholar 

  • Balon TW, Zorzano A, Treadway JL, Goodman MN, Ruderman NB (1990) Effect of insulin on protein synthesis and degradation in skeletal muscle after exercise. Am J Physiol 258:E92–E97

    PubMed  CAS  Google Scholar 

  • Bruusgaard JC, Liestol K, Ekmark M, Kollstad K, Gundersen K (2003) Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. J Physiol (Lond) 551:467–478

    Article  CAS  Google Scholar 

  • Carson JA, Alway SE (1996) Stretch overload-induced satellite cell activation in slow tonic muscle from adult and aged Japanese quail. Am J Physiol 270:C578–C584

    PubMed  CAS  Google Scholar 

  • Carson JA, Booth FW (1998) Effect of serum and mechanical stretch on skeletal alpha-actin gene regulation in cultured primary muscle cells. Am J Physiol 275:C1438–C1448

    PubMed  CAS  Google Scholar 

  • Carson JA, Yan Z, Booth FW, Coleman ME, Schwartz RJ, Stump CS (1995) Regulation of skeletal alpha-actin promoter in young chickens during hypertrophy caused by stretch overload. Am J Physiol 268:C918–C924

    PubMed  CAS  Google Scholar 

  • Carson JA, Schwartz RJ, Booth FW (1996) SRF and TEF-1 control of chicken skeletal alpha-actin gene during slow-muscle hypertrophy. Am J Physiol 270:C1624–C1633

    PubMed  CAS  Google Scholar 

  • Charbonnier F, Gaspera BD, Armand AS, van der Laarse WJ , Launay T, Becker C, Gallien CL, Chanoine C (2002) Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes. J Biol Chem 277:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Chow KL, Schwartz RJ (1990) A combination of closely associated positive and negative cis-acting promoter elements regulates transcription of the skeletal a-actin gene. Mol Cell Biol 10:528–538

    PubMed  CAS  Google Scholar 

  • Crawford GNC (1954) An experimental study of muscle growth in the rabbit. J Bone Joint Surg 36-B:294–303

    CAS  Google Scholar 

  • Czerwinski SM, Martin JM, Bechtel PJ (1994) Modulation of IGF mRNA abundance during stretch-induced skeletal muscle hypertrophy and regression. J Appl Physiol 76:2026–2030

    PubMed  CAS  Google Scholar 

  • Des Tombe AL, Beek-Harmsen BJ van, Lee-De Groot MB, van der Laarse WJ (2002) Calibrated histochemistry applied to oxygen supply and demand in hypertrophied rat myocardium. Microsc Res Tech 58:412–420

    Article  PubMed  Google Scholar 

  • Dix DJ, Eisenberg BR (1990) Myosin mRNA accumulation and myofibrillogenesis at the myotendinous junction of stretched muscle fibers. J Cell Biol 111:1885–1894

    Article  PubMed  CAS  Google Scholar 

  • Eizema K, Burg M van den, Kiri A, Dingboom EG, Oudheusden H van, Goldspink G, Weijs WA (2003) Differential expression of equine myosin heavy-chain mRNA and protein isoforms in a limb muscle. J Histochem Cytochem 51:1207–1216

    PubMed  CAS  Google Scholar 

  • Ewton DZ, Falen SL, Florini JR (1987) The type II insulin-like growth factor (IGF) receptor has low affinity for IGF-I analogs: pleiotypic actions of IGFs on myoblasts are apparently mediated by the type I receptor. Endocrinology 120:115–123

    Article  PubMed  CAS  Google Scholar 

  • Florini JR, Ewton DZ (1990) Highly specific inhibition of IGF-I-stimulated differentiation by an antisense oligodeoxyribonucleotide to myogenin mRNA No effects on other actions of IGF-1. J Biol Chem 265:13435–13437

    PubMed  CAS  Google Scholar 

  • Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17:481–517

    Article  PubMed  CAS  Google Scholar 

  • Fulks RM, Li JB, Goldberg AL (1975) Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem 250:290–298

    PubMed  CAS  Google Scholar 

  • Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5:87–90

    Article  PubMed  CAS  Google Scholar 

  • Goldspink G (2003) Gene expression in muscle in response to exercise. J Muscle Res Cell Motil 24:121–126

    Article  PubMed  CAS  Google Scholar 

  • Gulve EA, Dice JF (1989) Regulation of protein synthesis and degradation in L8 myotubes. Effects of serum, insulin and insulin-like growth factors. Biochem J 260:377–387

    PubMed  CAS  Google Scholar 

  • Habets PE, Franco D, Ruijter JM, Sargeant AJ, Pereira JA, Moorman AF (1999) RNA content differs in slow and fast muscle fibers: implications for interpretation of changes in muscle gene expression. J Histochem Cytochem 47:995–1004

    PubMed  CAS  Google Scholar 

  • Heslinga JW, Huijing PA (1993) Muscle length-force characteristics in relation to muscle architecture: a bilateral study of gastrocnemius medialis muscles of unilaterally immobilized rats. Eur J Appl Physiol Occup Physiol 66:289–298

    Article  PubMed  CAS  Google Scholar 

  • Huijing PA, Jaspers RT (2005) Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand J Med Sci Sports 15:349–380

    Article  PubMed  CAS  Google Scholar 

  • Jacobs-El J, Zhou MY, Russell B (1995) MRF4, Myf-5, and myogenin mRNAs in the adaptive responses of mature rat muscle. Am J Physiol 268:C1045–C1052

    PubMed  CAS  Google Scholar 

  • Jaspers RT, Feenstra HM, Lee-De Groot LM, Huijing PA, Laarse WJ van der (2001) Twitch and tetanic tension during culture of mature Xenopus laevis single muscle fibres. Arch Physiol Biochem 109:410–417

    Article  PubMed  CAS  Google Scholar 

  • Jaspers RT, Feenstra HM, Verheyen AK, Laarse WJ van der, Huijing PA (2004) Effects of strain on contractile force and number of sarcomeres in series of Xenopus laevis single muscle fibres during long-term culture. J Muscle Res Cell Motil 25:285–296

    Article  PubMed  CAS  Google Scholar 

  • Jennings CG (1992) Expression of the myogenic gene MRF4 during Xenopus development. Dev Biol 150:121–132

    Article  CAS  Google Scholar 

  • Kimball SR, Farrell PA, Jefferson LS (2002) Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol 93:1168–1180

    PubMed  CAS  Google Scholar 

  • Kindig CA, Howlett RA, Hogan MC (2003) Effect of extracellular PO2 on the fall in intracellular PO2 in contracting single myocytes. J Appl Physiol 94:1964–1970

    PubMed  Google Scholar 

  • Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariable methods. PWS-Kent, Boston

    Google Scholar 

  • Lännergren J, Smith RS (1966) Types of muscle fibres in toad skeletal muscle. Acta Physiol Scand 68:263–274

    Article  Google Scholar 

  • Laarse WJ van der, Diegenbach PC, Elzinga G (1989) Maximum rate of oxygen consumption and quantitative histochemistry of succinate dehydrogenase in single muscle fibres of Xenopus laevis. J Muscle Res Cell Motil 10:221–228

    Article  PubMed  Google Scholar 

  • Laarse WJ van der, Tombes AL des, Lee-de Groot MBE, Diegenbach PC (1998) Size principle of striated muscle cells. Neth J Zool 48:213–223

    Article  Google Scholar 

  • Laarse WJ van der, Tombe AL des, Beek-Harmsen BJ van, Lee-de Groot MBE, Jaspers RT (2005) Krogh’s diffusion coefficient for oxygen in isolated Xenopus skeletal muscle fibers and rat myocardial trabeculae at maximum rates of oxygen consumption. J Appl Physiol 99:2173–2180

    Article  PubMed  Google Scholar 

  • Lee-de Groot MBE, Laarse WJ van der (1996) Twitch characteristics and energy metabolites of mature muscle fibres of Xenopus laevis in culture. J Muscle Res Cell Motil 17:439–448

    Article  PubMed  CAS  Google Scholar 

  • Liversage RA, Foty RA, Miles PD (1987) Serum immunoreactive insulin levels in intact and regenerating postmetamorphic Xenopus laevis. J Exp Zool 243:453–460

    Article  PubMed  CAS  Google Scholar 

  • Loughna PT, Brownson C (1996) Two myogenic regulatory factor transcripts exhibit muscle-specific responses to disuse and passive stretch in adult rats. FEBS Lett 390:304–306

    Article  PubMed  CAS  Google Scholar 

  • Lowe DA, Alway SE (1999) Stretch-induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow-tonic muscle are not dependent upon satellite cell proliferation. Cell Tissue Res 296:531–539

    Article  PubMed  CAS  Google Scholar 

  • Lowe WL Jr, Fu R, Banko M (1997) Growth factor-induced transcription via the serum response element is inhibited by cyclic adenosine 3′,5′-monophosphate in MCF-7 breast cancer cells. Endocrinology 138:2219–2226

    Article  PubMed  CAS  Google Scholar 

  • Marsh DR, Carson JA, Stewart LN, Booth FW (1998) Activation of the skeletal alphaactin promoter during muscle regeneration. J Muscle Res Cell Motil 19:897–907

    Article  PubMed  CAS  Google Scholar 

  • McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol (Lond) 516:583–592

    Article  CAS  Google Scholar 

  • Monier S, Le Marchand-Brustel Y (1982) Insulin affects only initiation and not elongation in protein synthesis in soleus muscles of lean and obese mice. FEBS Lett 147:211–214

    Article  PubMed  CAS  Google Scholar 

  • O’Connor PM, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, Davis TA (2003) Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 285:E40–E53

    PubMed  CAS  Google Scholar 

  • Ohira Y, Yoshinaga T, Ohara M, Nonaka I, Yoshioka T, Yamashita-Goto K, Shenkman BS, Kozlovskaya IB, Roy RR, Edgerton VR (1999) Myonuclear domain and myosin phenotype in human soleus after bed rest with or without loading. J Appl Physiol 87:1776–1785

    PubMed  CAS  Google Scholar 

  • Owino V, Yang SY, Goldspink G (2001) Age-related loss of skeletal muscle function and the inability to express the autocrine form of insulin-like growth factor-1 (MGF) in response to mechanical overload. FEBS Lett 505:259–263

    Article  PubMed  CAS  Google Scholar 

  • Periasamy M, Gregory P, Martin BJ, Stirewalt WS (1989) Regulation of myosin heavychain gene expression during skeletal-muscle hypertrophy. Biochem J 257:691–698

    PubMed  CAS  Google Scholar 

  • Phelan JN, Gonyea WJ (1997) Effect of radiation on satellite cell activity and protein expression in overloaded mammalian skeletal muscle. Anat Rec 247:179–188

    Article  PubMed  CAS  Google Scholar 

  • Roberts RG, Redfern CP, Goodship TH (2003) Effect of insulin upon protein degradation in cultured human myocytes. Eur J Clin Invest 33:861–867

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt JD, Yong D, Parry DJ (1994) Satellite cell activity is required for hypertrophy of overloaded adult rat muscle. Muscle Nerve 17:608–613

    Article  PubMed  CAS  Google Scholar 

  • Roy RR, Monke SR, Allen DL, Edgerton VR (1999) Modulation of myonuclear number in functionally overloaded and exercised rat plantaris fibers. J Appl Physiol 87:634–642

    PubMed  CAS  Google Scholar 

  • Roy RR, Zhong H, Talmadge RJ, Bodine SC, Fanton JW, Koslovskaya I, Edgerton VR (2001) Size and myonuclear domains in Rhesus soleus muscle fibers: short-term spaceflight. J Gravit Physiol 8:49–56

    PubMed  CAS  Google Scholar 

  • Russell B, Dix DJ (1992) Mechanisms for intracellular distribution of mRNA: in situ hybridization studies in muscle. Am J Physiol 262:C1–C8

    PubMed  CAS  Google Scholar 

  • Sayegh JF, Lajtha A (1989) In vivo rates of protein synthesis in brain, muscle, and liver of five vertebrate species. Neurochem Res 14:1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Scales JB, Olson EN, Perry M (1990) Two distinct Xenopus genes with homology to MyoD1 are expressed before somite formation in early embryogenesis. Mol Cell Biol 10:1516–524

    PubMed  CAS  Google Scholar 

  • Schmalbruch H, Hellhammer U (1977) The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec 189:169–175

    Article  PubMed  CAS  Google Scholar 

  • Shimizu M, Webster C, Morgan DO, Blau HM, Roth RA (1986) Insulin and insulinlike growth factor receptors and responses in cultured human muscle cells. Am J Physiol 251:E611–E615

    PubMed  CAS  Google Scholar 

  • Spector SA, Simard CP, Fournier M, Sternlicht E, Edgerton VR (1982) Architectural alterations of rat hind-limb skeletal muscles immobilized at different lengths. Exp Neurol 76:94–110

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Spohr G (1986) Isolation and characterization of sarcomeric actin genes expressed in Xenopus laevis embryos. J Mol Biol 187:349–361

    Article  PubMed  CAS  Google Scholar 

  • Tseng BS, Kasper CE, Edgerton VR (1994) Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers. Cell Tissue Res 275:39–49

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh H, Kaufman S (1979) In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268

    Article  PubMed  CAS  Google Scholar 

  • Williams PE, Goldspink G (1971) Longitudinal growth of striated muscle fibres. J Cell Sci 9:751–767

    PubMed  CAS  Google Scholar 

  • Williams PE, Goldspink G (1978) Changes in sarcomere length and physiological properties in immobilized muscle. J Anat 127:459–468

    PubMed  CAS  Google Scholar 

  • Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522:156–160

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Alnaqeeb M, Simpson H, Goldspink G (1997) Changes in muscle fibre type, muscle mass and IGF-I gene expression in rabbit skeletal muscle subjected to stretch. J Anat 190:613–622

    Article  PubMed  Google Scholar 

  • Yu JG, Furst DO, Thornell LE (2003) The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochem Cell Biol 119:383–393

    PubMed  CAS  Google Scholar 

  • Zador E, Dux L, Wuytack F (1999) Prolonged passive stretch of rat soleus muscle provokes an increase in the mRNA levels of the muscle regulatory factors distributed along the entire length of the fibers. J Muscle Res Cell Motil 20:395–402

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Roy RR, Siengthai B, Edgerton VR (2005) Effects of inactivity on fiber size and myonuclear number in rat soleus muscle. J Appl Physiol 99:1494–1499

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. M. A. Blankenstein and Mrs. Jeanne Huijser of the Laboratory of Endocrinology of the VU Medical Center for immunoradiometric quantification of insulin concentrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Jaspers.

Additional information

This work was partially supported by a research grant from the Haak Bastiaanse Kuneman Stichting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaspers, R.T., Feenstra, H.M., van Beek-Harmsen, B.J. et al. Differential effects of muscle fibre length and insulin on muscle-specific mRNA content in isolated mature muscle fibres during long-term culture. Cell Tissue Res 326, 795–808 (2006). https://doi.org/10.1007/s00441-006-0227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0227-z

Keywords

Navigation