Skip to main content
Log in

Caspase activation throughout the first wave of spermatogenesis in the rat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Early in postnatal life, the first wave of spermatogenesis is accompanied by an initial wave of germ cell apoptosis. This may reflect an adjustment in the number of germ cells that can be adequately maintained by Sertoli cells. Two major pathways (intrinsic and extrinsic) are involved in the process of caspase activation and apoptosis in mammalian cells. The extrinsic pathway is characterized by the oligomerization of death receptors such as FAS or tumor necrosis factor, followed by the activation of caspase-8 and caspase-3. The intrinsic pathway involves the activation of procaspase-9, which in turn activates caspase-3. Extensive information is available concerning apoptotic inducers and their possible mechanisms in the adult rat. However, no data exist regarding the molecular and cellular mechanisms governing physiological cell death during puberty in the male rat. We have studied caspase activation throughout the first wave of spermatogenesis in the rat under physiological conditions, by combining the TUNEL procedure with the localization of active caspases in germ cells. We observed TUNEL-positive germ cells in rats of 5–40 days of age, the highest number being found in 25-day-old rats. TUNEL-positive and caspase-3-positive germ cells appeared as long chains of interconnected germ cells in 25-day-old rats. Caspase activation was assayed by either immunohistochemistry with antibodies against active caspase-3, -8, and -9, or by determining enzymatic activity in seminiferous tubules extracts. Both techniques showed activation of caspase-3, -8, and -9 in 25-day-old rats and low enzymatic activity at other ages. Confocal scanning laser microscopy indicated that active caspase-3, -8, and -9 co-localized with TUNEL-positive cells. Thus, caspase-3, -8, and -9 are active in apoptotic germ cells during the first wave of rat spermatogenesis. The extrinsic pathway of apoptosis may therefore play an important role in germ cell apoptosis during puberty in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algeciras-Schimnich A, Shen L, Barnhart BC, Murmann AE, Burkhardt JK, Peter ME (2002) Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22:207–220

    Article  PubMed  CAS  Google Scholar 

  • Antonsson B, Martinou JC (2000) The Bcl-2 protein family. Exp Cell Res 256:50–57

    Article  PubMed  CAS  Google Scholar 

  • Aoudjit F, Vuori K (2001) Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J Cell Biol 152:633–643

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Rodriguez J (1998) A matter of death and life: the significance of germ cell death during spermatogenesis. Int J Androl 21:236–248

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Rodriguez J, Martinez-Garcia C (1997) In vivo analysis of germ cell apoptosis reveals the existence of stage-specific “social” control of germ cell death in the seminiferous epithelium. Int J Androl 20:373–379

    Article  PubMed  CAS  Google Scholar 

  • Boekelheide K, Lee J, Shipp EB, Richburg JH, Li G (1998) Expression of Fas system-related genes in the testis during development and after toxicant exposure. Toxicol Lett 102–103:503–508

    Article  PubMed  Google Scholar 

  • Boulogne B, Olaso R, Levacher C, Durand P, Habert R (1999) Apoptosis and mitosis in gonocytes of the rat testis during foetal and neonatal development. Int J Androl 22:356–365

    Article  PubMed  CAS  Google Scholar 

  • Castanares M, Vera Y, Erkkila K, Kyttanen S, Lue Y, Dunkel L, Wang C, Swerdloff RS, Sinha Hikim AP (2005) Minocycline up-regulates BCL-2 levels in mitochondria and attenuates male germ cell apoptosis. Biochem Biophys Res Commun 337:663–669

    Article  PubMed  CAS  Google Scholar 

  • Cecconi F (1999) Apaf1 and the apoptotic machinery. Cell Death Differ 6:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Ok DW, Kwon DN, Chung JI, Kim HC, Yeo SM, Kim T, Seo HG, Kim JH (2004) Murine male germ cell apoptosis induced by busulfan treatment correlates with loss of c-kit-expression in a Fas/FasL- and p53-independent manner. FEBS Lett 575:41–51

    Article  PubMed  CAS  Google Scholar 

  • Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  • Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J, Yuan J, Fisher DE (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275:38905–38911

    Article  PubMed  CAS  Google Scholar 

  • Faraco PR, Ledgerwood EC, Vandenabeele P, Prins JB, Bradley JR (1999) Tumor necrosis factor induces distinct patterns of caspase activation in WEHI-164 cells associated with apoptosis or necrosis depending on cell cycle stage. Biochem Biophys Res Commun 261:385–392

    Article  PubMed  CAS  Google Scholar 

  • Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    Article  PubMed  CAS  Google Scholar 

  • Grataroli R, Vindrieux D, Gougeon A, Benahmed M (2002) Expression of tumor necrosis factor-alpha-related apoptosis-inducing ligand and its receptors in rat testis during development. Biol Reprod 66:1707–1715

    Article  PubMed  CAS  Google Scholar 

  • Hamer G, Roepers-Gajadien HL, Gademan IS, Kal HB, De Rooij DG (2003) Intercellular bridges and apoptosis in clones of male germ cells. Int J Androl 26:348–353

    Article  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  • Huckins C, Oakberg EF (1978) Morphological and quantitative analysis of spermatogonia in mouse testes using whole mounted seminiferous tubules. II. The irradiated testes. Anat Rec 192:529–542

    Article  PubMed  CAS  Google Scholar 

  • Jahnukainen K, Chrysis D, Hou M, Parvinen M, Eksborg S, Soder O (2004) Increased apoptosis occurring during the first wave of spermatogenesis is stage-specific and primarily affects midpachytene spermatocytes in the rat testis. Biol Reprod 70:290–296

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Ghosh SR, Weil AC, Zirkin BR (2001) Caspase-3 and caspase-activated deoxyribonuclease are associated with testicular germ cell apoptosis resulting from reduced intratesticular testosterone. Endocrinology 142:3809–3816

    Article  PubMed  CAS  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  • Mishra DP, Shaha C (2005) Estrogen-induced spermatogenic cell apoptosis occurs via the mitochondrial pathway: role of superoxide and nitric oxide. J Biol Chem 280:6181–6196

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Sasagawa I, Suzuki Y, Nakada T, Fujii J (2002) Apoptosis and expression of apoptosis-related genes in the mouse testis following heat exposure. Fertil Steril 77:787–793

    Article  PubMed  Google Scholar 

  • Nair R, Shaha C (2003) Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system. J Biol Chem 278:6470–6481

    Article  PubMed  CAS  Google Scholar 

  • Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490

    Article  PubMed  CAS  Google Scholar 

  • Ren HP, Russell LD (1991) Clonal development of interconnected germ cells in the rat and its relationship to the segmental and subsegmental organization of spermatogenesis. Am J Anat 192:121–128

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P (1997) An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 16:2262–2270

    Article  PubMed  CAS  Google Scholar 

  • Russell LD, Alger LE, Nequin LG (1987) Hormonal control of pubertal spermatogenesis. Endocrinology 120:1615–1632

    Article  PubMed  CAS  Google Scholar 

  • Russell L, Ettlin R, Hikim A, Clegg E (1990) Histological and histopathological evaluation of the testis. Cache River, Clearwater

    Google Scholar 

  • Rytomaa M, Martins LM, Downward J (1999) Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Curr Biol 9:1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Said TM, Paasch U, Glander HJ, Agarwal A (2004) Role of caspases in male infertility. Hum Reprod Update 10:39–51

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Gomez MV, Alberdi E, Ibarretxe G, Torre I, Matute C (2003) Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J Neurosci 23:9519–9528

    PubMed  CAS  Google Scholar 

  • Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274:22532–22538

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR (1995) Biometry: the principles and practice of statistic in biological research. Freeman, New York

    Google Scholar 

  • Tres LL, Rosselot C, Kierszenbaum AL (2004) Caspase activity inhibition delays programmed spermatogenic cell death in vitro. Arch Histol Cytol 67:315–324

    Article  PubMed  CAS  Google Scholar 

  • Ventela S, Toppari J, Parvinen M (2003) Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 14:2768–2780

    Article  PubMed  CAS  Google Scholar 

  • Vera Y, Diaz-Romero M, Rodriguez S, Lue Y, Wang C, Swerdloff RS, Sinha Hikim AP (2004) Mitochondria-dependent pathway is involved in heat-induced male germ cell death: lessons from mutant mice. Biol Reprod 70:1534–1540

    Article  PubMed  CAS  Google Scholar 

  • Vera Y, Rodriguez S, Castanares M, Lue Y, Atienza V, Wang C, Swerdloff RS, Sinha Hikim AP (2005) Functional role of caspases in heat-induced testicular germ cell apoptosis. Biol Reprod 72:516–522

    Article  PubMed  CAS  Google Scholar 

  • Wang RA, Nakane PK, Koji T (1998) Autonomous cell death of mouse male germ cells during fetal and postnatal period. Biol Reprod 58:1250–1256

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse NJ, Sedelies KA, Browne KA, Wowk ME, Newbold A, Sutton VR, Clarke CJ, Oliaro J, Lindemann RK, Bird PI, Johnstone RW, Trapani JA (2005) A central role for Bid in granzyme B-induced apoptosis. J Biol Chem 280:4476–4482

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  • Yan W, Suominen J, Samson M, Jegou B, Toppari J (2000) Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro. Mol Cell Endocrinol 165:115–129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. E. Bustos-Obregón (Universidad de Chile) for his helpful advice on germ cell identification, and Dr. A. Kierszenbaum (City University, New York) for his critical comments during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo D. Moreno.

Additional information

This work was financed by a research grant from FONDECYT (1040800) to R.D.M.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, R.D., Lizama, C., Urzúa, N. et al. Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res 325, 533–540 (2006). https://doi.org/10.1007/s00441-006-0186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0186-4

Keywords

Navigation