Skip to main content

Advertisement

Log in

Interdependent development of blood vessels and organs

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The cardiovascular system is the first functional organ in the vertebrate embryo, and many organs start to develop adjacent to cells of the cardiovascular system. Endothelial cells (EC) form the inner cell lining of blood vessels and represent the major cell type that interacts with developing organs. On the one hand, EC provide organs with signals. These signals determine the location, differentiation and morphology of an organ. On the other hand, EC receive signals from the organ-specific cell types. Such signals give EC organ-specific features that the organ needs to interact with the circulatory system. This review provides the reader with specific examples of an interdependent development of organs and blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2A–C.
Fig. 3A–E.
Fig. 4A, B.

Similar content being viewed by others

References

  • Ball GF, Riters LV, Balthazart J (2002) Neuroendocrinology of song behavior and avian brain plasticity: multiple sites of action of sex steroid hormones. Front Neuroendocrinol 23:137–178

    Article  CAS  PubMed  Google Scholar 

  • Bearer EL, Orci L (1985) Endothelial fenestral diaphragms: a quick-freeze, deep-etch study. J Cell Biol 100:418–428

    CAS  PubMed  Google Scholar 

  • Biemar F, Argenton F, Schmidtke R, Epperlein S, Peers B, Driever W (2001) Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 230:189–203

    Article  CAS  PubMed  Google Scholar 

  • Bignon J, Jaurand MC, Pinchon MC, Sapin C, Warnet JM (1976) Immunoelectron microscopic and immunochemical demonstrations of serum proteins in the alveolar lining material of the rat lung. Am Rev Respir Dis 113:109–120

    CAS  PubMed  Google Scholar 

  • Bonner-Weir S, Orci L (1982) New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes 31:883–889

    PubMed  Google Scholar 

  • Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1

    Article  PubMed  Google Scholar 

  • Braet F, De Zanger R, Baekeland M, Crabbe E, Van Der Smissen P, Wisse E (1995) Structure and dynamics of the fenestrae-associated cytoskeleton of rat liver sinusoidal endothelial cells. Hepatology 21:180–189

    CAS  PubMed  Google Scholar 

  • Douarin NM (1975) An experimental analysis of liver development. Med Biol 53:427–455

    CAS  PubMed  Google Scholar 

  • Drummond IA (2000) The zebrafish pronephros: a genetic system for studies of kidney development. Pediatr Nephrol 14:428–435

    Article  CAS  PubMed  Google Scholar 

  • Edlund H (2002) Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat Rev Genet 3:524–532

    Article  CAS  PubMed  Google Scholar 

  • Fukuda-Taira S (1981) Hepatic induction in the avian embryo: specificity of reactive endoderm and inductive mesoderm. J Embryol Exp Morphol 63:111–125

    CAS  PubMed  Google Scholar 

  • Grapin-Botton A, Melton DA (2000) Endoderm development: from patterning to organogenesis. Trends Genet 16:124–130

    Article  CAS  PubMed  Google Scholar 

  • Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS (1996) Hepatic specification of the gut endoderm in vitro: cell signaling and transcriptional control. Genes Dev 10:1670–1682

    CAS  PubMed  Google Scholar 

  • Hebrok M, Kim SK, Melton DA (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 12:1705–1713

    CAS  PubMed  Google Scholar 

  • Hirschi KK, Rohovsky SA, D'Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  CAS  PubMed  Google Scholar 

  • Hogan BL, Yingling JM (1998) Epithelial/mesenchymal interactions and branching morphogenesis of the lung. Curr Opin Genet Dev 8:481–486

    Article  CAS  PubMed  Google Scholar 

  • Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R, Johnson E, Milbrandt J (2002) Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–282

    CAS  PubMed  Google Scholar 

  • Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, nonredundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1:193–202

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Hebrok M, Melton DA (1997) Notochord to endoderm signaling is required for pancreas development. Development 124:4243–4252

    CAS  PubMed  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    CAS  PubMed  Google Scholar 

  • Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567

    CAS  PubMed  Google Scholar 

  • Lammert E, Cleaver O, Melton D (2003) Role of endothelial cells in early pancreas and liver development. Mech Dev 120:59–64

    Article  CAS  PubMed  Google Scholar 

  • Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C (1994) Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8:1875–1887

    CAS  PubMed  Google Scholar 

  • Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13:450–464

    Article  CAS  PubMed  Google Scholar 

  • Libby P, Pober JS (2001) Chronic rejection. Immunity 14:387–397

    Article  CAS  PubMed  Google Scholar 

  • Like AA (1970) The uptake of exogenous peroxidase by the beta cells of the islets of Langerhans. Am J Pathol 59:225–246

    CAS  PubMed  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  CAS  PubMed  Google Scholar 

  • Lombardi T, Montesano R, Furie MB, Silverstein SC, Orci L (1986) Endothelial diaphragmed fenestrae: in vitro modulation by phorbol myristate acetate. J Cell Biol 102:1965–1970

    CAS  PubMed  Google Scholar 

  • Louissaint A Jr, Rao S, Leventhal C, Goldman SA (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34:945–960

    CAS  PubMed  Google Scholar 

  • Majumdar A, Drummond IA (1999) Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev Genet 24:220–229

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563

    CAS  PubMed  Google Scholar 

  • McIntosh DP, Tan XY, Oh P, Schnitzer JE (2002) Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci U S A 99:1996–2001

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science 214:1368–1370

    CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    Article  CAS  PubMed  Google Scholar 

  • Predescu D, Predescu S, McQuistan T, Palade GE (1998) Transcytosis of alpha1-acidic glycoprotein in the continuous microvascular endothelium. Proc Natl Acad Sci U S A 95:6175–6180

    Article  CAS  PubMed  Google Scholar 

  • Reissmann E, Ernsberger U, Francis-West PH, Rueger D, Brickell PM, Rohrer H (1996) Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122:2079–2088

    CAS  PubMed  Google Scholar 

  • Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28

    CAS  PubMed  Google Scholar 

  • Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, et al. (1991) A cell culture model of the blood-brain barrier. J Cell Biol 115:1725–1735

    CAS  PubMed  Google Scholar 

  • Schnitzer JE (2001) Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 49:265–280

    Article  CAS  PubMed  Google Scholar 

  • Serluca FC, Drummond IA, Fishman MC (2002) Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr Biol 12:492–497

    Article  CAS  PubMed  Google Scholar 

  • Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85:331–343

    CAS  PubMed  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    PubMed  Google Scholar 

  • Slack JM (1995) Developmental biology of the pancreas. Development 121:1569–1580

    CAS  PubMed  Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84:183–192

    CAS  PubMed  Google Scholar 

  • Wells JM, Melton DA (2000) Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127:1563–1572

    CAS  PubMed  Google Scholar 

  • Wolff JR, Bar T (1972) 'Seamless' endothelia in brain capillaries during development of the rat's cerebral cortex. Brain Res 41:17–24

    Article  CAS  PubMed  Google Scholar 

  • Zaret KS (2002) Regulatory phases of early liver development: paradigms of organogenesis. Nat Rev Genet 3:499–512

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Lammert.

Additional information

Eckhard Lammert and Ganka Nikolova were supported by the Deutsche Forschungsgemeinschaft DFG (La1216/2–1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolova, G., Lammert, E. Interdependent development of blood vessels and organs. Cell Tissue Res 314, 33–42 (2003). https://doi.org/10.1007/s00441-003-0739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0739-8

Keywords

Navigation