Skip to main content

Advertisement

Log in

Potential effect on cellular response to cadmium of a single-nucleotide A → G polymorphism in the promoter of the human gene for metallothionein IIA

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Most people generally ingest cadmium in their food. Cadmium that has accumulated in tissues induces the synthesis of metallothioneins (MTs) which are metal-binding proteins that bind tightly to cadmium to inhibit its renal toxicity. Individuals whose ability to induce the synthesis of MTs is low seem likely to be particularly susceptible to the toxic effects of cadmium. In this study, we analyzed the polymorphism of the promoter region of the gene for MT-IIA, the major species of MT in humans, in 119 adult Japanese subjects. We found that about 18% of the subjects had an A → G single-nucleotide polymorphism in the core region of the promoter near the TATA box. A reporter-gene assay using HEK293 cells showed that replacement of A by G at position −5 reduced the efficiency of the cadmium-induced transcription of the gene for MT-IIA. This single-nucleotide polymorphism inhibited the binding of nuclear proteins to the core promoter region of the gene for MT-IIA. When the promoter region upstream of the TATA box was replaced by a sequence that contained three dioxin-responsive elements, the reporter-gene assay demonstrated that the A → G single-nucleotide polymorphism resulted in a marked reduction in the rate of dioxin-induced transcription. These results suggest that the A → G single-nucleotide polymorphism reduces the efficiency of those aspects of the transcription of the gene for MT-IIA that are controlled by general transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cagen SZ, Klaassen CD (1979) Protection of carbon tetrachloride-induced hepatotoxicity by zinc: role of metallothionein. Toxicol Appl Pharmacol 51:107–16

    Article  PubMed  CAS  Google Scholar 

  • Carter AD, Felber BK, Walling MJ, Jubier MF, Schmidt CJ, Hamer DH (1984) Duplicated heavy metal control sequences of the mouse metallothionein-I gene. Proc Natl Acad Sci USA 81:7392–7396

    Article  PubMed  CAS  Google Scholar 

  • Chalkley GE, Verrijzer CP (1999) DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250–TAF(II)150 complex recognizes the initiator. EMBO J 18:4835–4845

    Article  PubMed  CAS  Google Scholar 

  • Friberg L, Vahter M (1983) Assessment of exposure to lead and cadmium through biological monitoring: results of a UNEP/WHO global study. Environ Res 30:95–128

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Kenney N, Stoica A, Hilakivi-Clarke L, Singh B, Chepko G, Clarke R, Sholler PF, Lirio AA, Foss C, Reiter R, Trock B, Paik S, Martin MB (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 9:1081–4

    Article  PubMed  CAS  Google Scholar 

  • Kägi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  PubMed  Google Scholar 

  • Karin M, Haslinger A, Holtgreve H, Krauter P, Westphal M, Beato M (1984) Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature 308:513–519

    Article  PubMed  CAS  Google Scholar 

  • Kita K, Miura N, Yoshida M, Matsubara K, Imai Y, Naganuma A (2001) Original MRE-binding transcriptional factor gene in normal humans is ZRF, not MTF-1. J Health Sci 47:587–590

    Article  CAS  Google Scholar 

  • Koizumi S, Suzuki K, Ogra Y, Yamada H, Otsuka F (1999) Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 259:635–642

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu J, Habeebu SM, Waalkes MP, Klaassen CD (2000) Metallothionein-I/II null mice are sensitive to chronic oral cadmium-induced nephrotoxicity. Toxicol Sci 57:167–76

    Article  PubMed  CAS  Google Scholar 

  • Muller MM, Schreiber E, Schaffner W, Matthias P (1989) Rapid test for in vivo stability and DNA binding of mutated octamer binding proteins with ‘mini-extracts’ prepared from transfected cells. Nucleic Acids Res 17:6420

    PubMed  CAS  Google Scholar 

  • Naganuma A, Satoh M, Imura N (1987) Prevention of lethal and renal toxicity of cis-diamminedichloroplatinum(II) by induction of metallothionein synthesis without compromising its antitumor activity in mice. Cancer Res 47:983–987

    PubMed  CAS  Google Scholar 

  • Naganuma A, Satoh M, Imura N (1988) Specific reduction of toxic side effects of adriamycin by induction of metallothionein in mice. Jpn J Cancer Res 79:406–411

    PubMed  CAS  Google Scholar 

  • Okazaki Y, Miura N, Satoh M, Imura N, Naganuma A (1998) Metallothionein-mediated resistance to multiple drugs can be induced by several anticancer drugs in mice. Biochem Biophys Res Commun 245:815–818

    Article  PubMed  CAS  Google Scholar 

  • Olsson IM, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A (2002) Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect 110:1185–90

    PubMed  CAS  Google Scholar 

  • Otsuka F, Iwamatsu A, Suzuki K, Ohsawa M, Hamer DH, Koizumi S (1994) Purification and characterization of a protein that binds to metal responsive elements of the human metallothionein IIA gene. J Biol Chem 269:23700–23707

    PubMed  CAS  Google Scholar 

  • Robert F, Forget D, Li J, Greenblatt J, Coulombe B (1996) Localization of subunits of transcription factors IIE and IIF immediately upstream of the transcriptional initiation site of the adenovirus major late promoter. J Biol Chem 271:8517–8520

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Shioji T, Furukawa T, Nagai K, Arikawa T, Saito T, Sasaki Y, Furuyama T, Yoshinaga K (1977) Cadmium-induced proximal tubular dysfunction in a cadmium-polluted area. Contrib Nephrol 6:1–12

    PubMed  CAS  Google Scholar 

  • Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Miura N, Naganuma A, Matsuzaki N, Kawamura E, Imura N (1989) Prevention of adverse effects of g-ray irradiation by metallothionein induction by bismuth subnitrate in mice. Eur J Cancer Clin Oncol 25:1727–1731

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Naganuma A, Imura N (1992) Effect of preinduction of metallothionein on paraquat toxicity in mice. Arch Toxicol 66:145–148

    Article  PubMed  CAS  Google Scholar 

  • Satoh M, Kondo Y, Mita M, Nakagawa I, Naganuma A, Imura N (1993a) Prevention of carcinogenicity of anticancer drugs by metallothionein induction. Cancer Res 53:4767–4768

    CAS  Google Scholar 

  • Satoh M, Tsuchiya T, Kumada Y, Naganuma A, Imura N (1993b) Protection against lethal toxicity of various anticancer drugs by preinduction of metallothionein synthesis in mice. J Trace Elem Exp Med 6:41–44

    CAS  Google Scholar 

  • Stuart GW, Searle PF, Palmiter RD (1985) Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature 317:828–831

    Article  PubMed  CAS  Google Scholar 

  • Webb M (1979) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Westin G, Schaffner W (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J 7:3763–3770

    PubMed  CAS  Google Scholar 

  • WHO (1993) Cadmium. World Health Organization, Geneva

  • Yanai K, Saito T, Hirota K, Kobayashi H, Murakami K, Fukamizu A (1997) Molecular variation of the human angiotensinogen core promoter element located between the TATA box and transcription initiation site affects its transcriptional activity. J Biol Chem 272:30558–30562

    Article  PubMed  CAS  Google Scholar 

  • Yean D, Gralla J (1997) Transcription reinitiation rate: a special role for the TATA box. Mol Cell Biol 17:3809–3816

    PubMed  CAS  Google Scholar 

  • Yoshida M, Ohta H, Yamauchi Y, Seki Y, Sagi M, Yamazaki K, Sumi Y (1998) Age-dependent changes in metallothionein levels in liver and kidney of the Japanese. Biol Trace Elem Res 63:167–175

    PubMed  CAS  Google Scholar 

  • Zhang B, Satoh M, Nishimura N, Suzuki JS, Sone H, Aoki Y, Tohyama C (1998) Metallothionein deficiency promotes mouse skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene. Cancer Res 58:4044–4046

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science and by Health and Labour Sciences Research Grants for Research on the Risk of Chemical Substances from the Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Naganuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kita, K., Miura, N., Yoshida, M. et al. Potential effect on cellular response to cadmium of a single-nucleotide A → G polymorphism in the promoter of the human gene for metallothionein IIA. Hum Genet 120, 553–560 (2006). https://doi.org/10.1007/s00439-006-0238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0238-6

Keywords

Navigation