Skip to main content

Advertisement

Log in

Insecticidal and larvicidal activities of medicinal plant extracts against mosquitoes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In recent years, use of environment friendly and biodegradable natural insecticides of plant origin have received renewed attention as agents for vector control because they are rich in bioactive chemicals, active against a limited number of species including specific target insects, and biodegradable. The present study was carried out to evaluate the adulticidal, repellent, and larvicidal activity of crude hexane, ethyl acetate, and methanol extracts of eight plants, viz. Aristolochia indica L., Cassia angustifolia Vahl, Diospyros melanoxylon Roxb., Dolichos biflorus L., Gymnema sylvestre (Retz) Schult, Justicia procumbens L., Mimosa pudica L., and Zingiber zerumbet L., were tested against adult and early fourth instar larvae of Culex gelidus Theobald and Culex quinquefasciatus Say (Diptera: Culicidae). The effective adult mortality was observed in methanol extract of A. indica, ethyl acetate extract of D. biflorus, and ethyl acetate and hexane extract of Z. zerumbet against C. gelidus and C. quinquefasciatus (LD50 = 37.75, 78.56, 129.44, 86.13, 80.06, 112.42, 53.83, and 46.61; LD90 = 166.83, 379.14, 521.50, 289.83, 328.18, 455.72, 181.15, and 354.50 ppm, respectively). Complete protections for 150 min were found in hexane and methanol extract of A. indica and Z. zerumbet at 1,000 ppm against mosquito bites. The highest larval mortality was found in the hexane extract of Z. zerumbet, ethyl acetate extract of D. biflorus, and methanol extracts of A. indica against C. gelidus (LC50 = 26.48, 33.02, and 12.47 ppm; LC90 = 127.73, 128.79, and 62.33 ppm) and against C. quinquefasciatus (LC50 = 69.18, 34.76, and 25.60 ppm; LC90 = 324.40, 172.78, and 105.52 ppm), respectively, after 24 h. The plant extracts are potential to be used as an ideal eco-friendly approach for the control of the Japanese encephalitis vector, C. gelidus, and lymphatic filariasis vector, C. quinquefasciatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–266

    CAS  Google Scholar 

  • Akhtar MS, Iqbal Z, Khan MN, Lateef M (2000) Anthelmintic activity of medicinal plants with particular reference to their use in animals in the Indo-Pakistan subcontinent. Small Rumin Res 38:99–107

    Article  Google Scholar 

  • Al-Doghairi M, El-Nadi A, Elhag E, Al-Ayedh H (2004) Effect of Solenostemma argel on oviposition, egg hatchability and viability of Culex pipiens L. larvae. Phytother Res 18:335–338

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Asano J, Chiba K, Tada M, Yoshii T (1996) Antiviral activity of lignans and their glycosides from Justicia procumbens. Phytochem 42(3):713–717

    Article  CAS  Google Scholar 

  • Bandara KA, Kumar V, Saxena RC, Ramdas PK (2005) Bruchid (Coleoptera: Bruchidae) ovicidal phenylbutanoid from Zingiber purpureum. J Econ Entomol 98(4):1163–1169

    Article  PubMed  Google Scholar 

  • Chariandy CM, Seaforth CE, Phelps RH, Pollard GV, Khambay BP (1999) Screening of medicinal plants from Trinidad and Tobago for antimicrobial and insecticidal properties. J Ethnopharmacol 64(3):265–270

    Article  CAS  PubMed  Google Scholar 

  • Choochote W, Kanjanapothi D, Panthong A, Taesotikul T, Jitpakdi A, Chaithong U, Pitasawat B (1999) Larvicidal, adulticidal and repellent effects of Kaempferia galanga. Southeast Asian J Trop Med Public Health 30(3):470–476

    CAS  PubMed  Google Scholar 

  • Choochote W, Tuetun B, Kanjanapothi D, Rattanachanpichai E, Chaithong U, Chaiwong P, Jitpakdi A, Tippawangkosol P, Riyong D, Pitasawat B (2004) Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.) (Diptera: Culicidae). J Vector Ecol 29:340–346

    PubMed  Google Scholar 

  • Ciccia G, Coussio J, Mongelli E (2000) Insecticidal activity against Aedes aegypti larvae of some medicinal South American plants. J Ethnopharmacol 72(1–2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Curtis CF, Lines JD, Baolin L, Renz A (1991) Natural and synthetic repellents. In: Curtis CF (ed) Control of disease vectors in the community. Wolfe, London, pp 75–92

    Google Scholar 

  • Dua VK, Alam MF, Pandey AC, Rai S, Chopra AK, Kaul VK, Dash AP (2008) Insecticidal activity of Valeriana jatamansi (Verbenaceae) against mosquitoes. J Am Mosq Control Assoc 24:315–318

    Article  CAS  PubMed  Google Scholar 

  • Dua VK, Pandey AC, Dash AP (2010) Adulticidal activity of essential oil of Lantana camara leaves against mosquitoes. Indian J Med Res 131:434–439

    CAS  PubMed  Google Scholar 

  • Eamsobhana P, Yoolek A, Kongkaew W, Lerdthusnee K, Khlaimanee N, Parsartvit A, Malainual N, Yong HS (2009) Laboratory evaluation of aromatic essential oils from thirteen plant species as candidate repellents against Leptotrombidium chiggers (Acari: Trombiculidae), the vector of scrub typhus. Exp Appl Acarol 47(3):257–262

    Article  PubMed  Google Scholar 

  • Elango G, Bagavan A, Kamaraj C, Zahir AA, Rahuman AA (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Elango G, Rahuman AA, Kamaraj C, Zahir AA, Bagavan A (2010) Studies on effects of indigenous plant extracts on filarial vector Culex tritaeniorhynchus Giles. Parasitol Res 107:167–176

    Article  CAS  PubMed  Google Scholar 

  • Elimam AM, Elmalik KH, Ali FS (2009) Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Saudi Journal of Biological Sciences 16:95–100

    Article  Google Scholar 

  • Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bite. New Engl J Med 347:13–18

    Article  CAS  PubMed  Google Scholar 

  • Ganapaty S, Thomas PS, Fotso S, Laatsch H (2004) Antitermitic quinones from Diospyros sylvatica. Phytochemistry 65(9):1265–1271

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M (2009) Bioefficacy of Cassia fistula Linn. (Leguminosae) leaf extract against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 13:99–103

    CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102:289–92

    Article  CAS  PubMed  Google Scholar 

  • Halim ASA (2008) Efficacy of Zingiber officinale on third stage larvae and adult fecundity of Musca domestica and Anopheles pharoensis. J Egypt Soc Parasitol 38:385–92

    PubMed  Google Scholar 

  • Harborn J (1985) Introduction to Ecological Biochemistry [Russian translation], Graevskii BM (ed.), Mir, Moscow

  • Ibrahim B, M'batchi B, Mounzeo H, Bourobou-Bourobou HP, Posso P (2000) Effect of Tephrosia vogelii and Justicia extensa on Tilapia nilotica in vivo. J Ethnopharmacol 69(2):99–104

    Article  CAS  PubMed  Google Scholar 

  • Irungu BN, Rukunga GM, Mungai GM, Muthaura CN (2007) In vitro antiplasmodial and cytotoxicity activities of 14 medicinal plants from Kenya. South African Journal of Botany 73:204–207

    Article  Google Scholar 

  • Jang YS, Kim MK, Ahn YS, Lee HS (2002) Larvicidal activity of Brazilian plant against Aedes aegypti and Culex pipiens (Diptera: Culicidae). Agric Chem Biotechnol 4:131–134

    Google Scholar 

  • Jbilou R, Amri H, Bouayad N, Ghailani N, Ennabili A, Sayah F (2008) Insecticidal effects of extracts of seven plant species on larval development, alpha-amylase activity and offspring production of Tribolium castaneum (Herbst) (Insecta: Coleoptera: Tenebrionidae). Bioresour Technol 99(5):959–964

    Article  CAS  PubMed  Google Scholar 

  • Jeyabalan D, Arul N, Thangamathi P (2003) Studies on effects of Pelargonium citrosa leaf extracts on malarial vector, Anopheles stephensi Liston. Bioresour Technol 89(2):185–189

    Article  CAS  PubMed  Google Scholar 

  • Kalesaraj R (1975) Screening of some indigenous plants for anthelmintic action against human Ascaris lumbricoides. Part II Indian J Physiol Pharmacol 19:47–49

    Google Scholar 

  • Kamaraj C, Abdul Rahuman A, Bagavan A (2008a) Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol Res 103:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A (2008b) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 103(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Kantamreddi VS, Wright CW (2008) Investigation of Indian Diospyros species for antiplasmodial properties. Evid Based Complement Alternat Med 5(2):187–190

    Article  PubMed  Google Scholar 

  • Karmegam N, Sakthivadivel M, Anuradha V, Daniel T (1997) Indigenous-plant extracts as larvicidal agents against Culex quinquefasciatus Say. Bioresour Technol 59:137–140

    Article  CAS  Google Scholar 

  • Khanna GV, Kannabiran K (2007) Larvicidal effect of Hemidesmus indicus, Gymnema sylvestre and Eclipta prostrate against Culex quinquefasciatus mosquito larvae. African J of Biotechnol 6:307–311

    Google Scholar 

  • Kumar VP, Chauhan NS, Padh H, Rajani M (2006) Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 107(2):182–188

    Article  PubMed  Google Scholar 

  • Libraty DH, Nisalak A, Endy TP, Suntayakorn S, Vaughn DW, Innis BL (2002) Clinical and immunological risk factors for severe disease in Japanese encephalitis. Trans R Soc Trop Med Hyg 96:173–178

    Article  PubMed  Google Scholar 

  • Lobstein A, Weniger B, Um BH, Steinmetz M, Declercq L, Anton R (2002) 4"-hydroxy-maysin and cassiaoccidentalin B, two unusual C-glycosylflavones from Mimosa pudica (Mimosaceae). Biochem Syst Ecol 30:375–377

    Article  CAS  Google Scholar 

  • Mahanta M, Mukherjee AK (2001) Neutralization of lethality, myotoxicity and toxic enzymes of Naja kaouthia venom by Mimosa pudica root extracts. J Ethnopharmacol 75:55–60

    Article  CAS  PubMed  Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95(5):363–365

    Article  PubMed  Google Scholar 

  • Palsson K, Jaenson TG (1992) Plant products used as mosquito repellents in Guinea Bissau, West Africa. Acta Trop 72(1):39–52

    Article  Google Scholar 

  • Pandey SK, Upadhyay S, Tripathi AK (2009) Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res 105(2):507–512

    Article  CAS  PubMed  Google Scholar 

  • Pitasawat B, ChoochoteW TB, Tippawangkosol P, Kanjanapothi D, Jitpakdi A, Riyong D (2003) Repellency of aromatic turmeric Curcuma aromatica under laboratory and field conditions. J Vector Ecol 28(2):234–240

    PubMed  Google Scholar 

  • Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SPS (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96:1749–1757

    Article  CAS  PubMed  Google Scholar 

  • Pushpanathan T, Jebanesan A, Govindarajan M (2008) The essential oil of Zingiber officinalis Linn (Zingiberaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 102:1289–1291

    Article  PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104(2):337–340

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103:133–139

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71(5):553–555

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K, Bagavan A (2008) Mosquito larvicidal activity of isolated compounds from the rhizome of Zingiber officinale. Phytother Res 22(8):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Saravanan E, Zahir AA, Elango G (2009a) Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(6):1365–1372

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009b) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(3):637–643

    Article  PubMed  Google Scholar 

  • Ranaweera SS (1996) Mosquito–larvicidal activity of some Sri Lankan plants. J Natl Sci Counc Sri Lanka 24:63–69

    Google Scholar 

  • Ravi V, Vanajakshi S, Gowda A, Chandramuki A (1989) A laboratory diagnosis of Japanese encephalitis using monoclonal antibodies and correlation of findings with the outcome. J Med Virol 29:221–223

    Article  CAS  PubMed  Google Scholar 

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. CABIOS 8:209–213

    CAS  PubMed  Google Scholar 

  • Remme JHF, de Raadt P, Godal T (1993) The burden of tropical diseases. Med J Aust 158:465

    CAS  PubMed  Google Scholar 

  • Reuben R, Gajanana A (1997) Japanese encephalitis in India. Indian J Pediatr 64:243–251

    Article  CAS  PubMed  Google Scholar 

  • Satdive RK, Abhilash P, Fulzele DP (2003) Antimicrobial activity of Gymnema sylvestre leaf extract. Fitoterapia 74:699–701

    Article  CAS  PubMed  Google Scholar 

  • Sawangjaroen N, Subhadhirasakul S, Phongpaichit S, Siripanth C, Jamjaroen K, Sawangjaroen K (2005) The in vitro anti-giardial activity of extracts from plants that are used for self-medication by AIDS patients in southern Thailand. Parasitol Res 95:17–21

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104:237–44

    Article  CAS  PubMed  Google Scholar 

  • Silva CR, Monteiro MR, Rocha HM, Ribeiro AF, Caldeira-de-Araujo A, Leitão AC, Bezerra RJ, Pádula M (2008) Assessment of antimutagenic and genotoxic potential of senna (Cassia angustifolia Vahl.) aqueous extract using in vitro assays. Toxicol in Vitro 22:212–218

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Mittal PK, Dhiman RC (2005) Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae. J Commun Dis 37:109–113

    CAS  PubMed  Google Scholar 

  • Solomon T (2004) Flavivirus encephalitis. N Engl J Med 351:370–378

    Article  CAS  PubMed  Google Scholar 

  • Taubes G (2000) Vaccines. Searching for parasites weak spot. Science 290(5491):434–437

    Article  CAS  PubMed  Google Scholar 

  • Tawatsin A, Asavadachanukorn P, Thavara U, Wongsinkongman P, Bansidhi J, Boonruad T, Chavalittumrong P, Soonthornchareonnon N, Komalamisra N, Mulla MS (2006) Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J Trop Med Public Health 37(5):915–931

    CAS  PubMed  Google Scholar 

  • Thavara U, Tawatsin A, Bhakdeenuan P, Wongsinkongman P, Boonruad T, Bansiddhi J, Chavalittumrong P, Komalamisra N, Siriyasatien P, Mulla MS (2007) Repellent activity of essential oils against cockroaches (Dictyoptera: Blattidae, Blattellidae, and Blaberidae) in Thailand. Southeast Asian J Trop Med Public Health 38(4):663–673

    PubMed  Google Scholar 

  • Thomas CJ, Callaghan A (1999) The use of garlic (Allium sativa) and lemon peel (Citrus limon) extracts as C. pipiens larvicides: persistence and interaction with an organophosphate resistance mechanism. Chemosphere 39:2489–2496

    Article  CAS  Google Scholar 

  • Venkatachalam MR, Jebanesan A (2001) Repellent activity of Ferronia elephantum Corr. (Rutaceae) leaf extract against Aedes aegypti (L.). Bioresour Technol 76:287–288

    Article  CAS  PubMed  Google Scholar 

  • Wattanachai P, Tintanon B (1999) Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok, Thailand. Commun Dis J 25:188–191

    Google Scholar 

  • Wiesman Z, Chapagain BP (2006) Larvicidal activity of saponin containing extracts and fractions of fruit mesocarp of Balanites aegyptiaca. Fitoterapia 77(6):420–424

    Article  CAS  PubMed  Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides. CTD/WHO PES/IC/96.1, p 69

  • World Health Organization (1981). Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamate insecticides: diagnostic test. Geneva: WHO. WHO/VBC/81.807

  • Wu TS, Damu AG, Su CR, Kuo PC (2004) Terpenoids of Aristolochia and their biological activities. Nat Prod Rep 21:594–624

    Article  CAS  PubMed  Google Scholar 

  • Zahir AA, Rahuman AA, Kamaraj C, Bagavan A, Elango G, Sangaran A, Kumar BS (2009) Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 105:453–461

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to C. Abdul Hakeem College Management, Dr. S. Mohammed Yousuff, Principal, Dr. K. Abdul Subhan, HOD of Zoology Department, for their help and suggestion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdul Abdul Rahuman or Anita Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamaraj, C., Rahuman, A.A., Mahapatra, A. et al. Insecticidal and larvicidal activities of medicinal plant extracts against mosquitoes. Parasitol Res 107, 1337–1349 (2010). https://doi.org/10.1007/s00436-010-2006-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2006-8

Keywords

Navigation